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Abstract

Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining
them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or
against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network
modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon
cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an
ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional
coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-
minimizing operon organization compared with randomized controls. Among constitutively expressed physically
interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are
expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases
interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes.
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Introduction

The organization of genes into operons is a prominent feature of

bacterial chromosomes [1] that appear in some eukaryotes as well

[2]. An operon is typically characterized as a promoter followed by

multiple genes that are cotranscribed so that each transcription

initiation event produces a polycistronic messenger RNA (mRNA)

encoding multiple gene products [3]. Hypotheses explaining the

emergence and maintenance of operons include proportional

coregulation [4,5,6,7,8,9], horizontal transfer of intact ‘‘selfish’’

operons [10], emergence via gene duplication [11], coproduction

of physically interacting proteins to speed their association [12,13],

evolvability of co-regulation for interacting protein products [14],

and reduction of intrinsic noise [15]. Current evidence favors some

hypotheses more than others, but fails to indicate a definitive

explanation for how operons are maintained in bacterial

chromosomes [4,11,12,13].

Arising from stochasticity of individual biochemical reactions

and low copy numbers of reactants per cell, intrinsic noise plays a

central role in network dynamics [16,17]. In bacteria, intrinsic

noise is most evident in gene expression, caused by translational

bursting arising from small numbers of mRNA producing many

proteins [18,19] and transcriptional bursting arising from slow

activation-deactivation cycles of transcriptional activity by un-

known mechanism [20,21]. Extrinsic noise, caused by uncertain-

ties in global parameters and states including those characterizing

transcriptional and translational machinery, also contributes to

overall biochemical noise [22]. Noise in protein levels is commonly

characterized by coefficient of variation (CV), the normalized root-

mean square deviation of the protein levels from their mean value

(CV =s/m, where s is the standard deviation and m is the mean)

but other measures such as autocorrelation and covariance

between concentrations of different proteins can give additional

insights.

The effects of intrinsic noise on operon maintenance are not

well characterized, but covariance between protein levels arising

from intrinsic noise depends on transcriptional coupling (co-

expression from an operon) of the corresponding genes [15]. The

order of genes within an operon may also affect noise [23].

Therefore, we hypothesize that noise-related effects contribute to

the evolutionary maintenance of operons. Studies of several

specific systems corroborate that correlative effects of transcrip-

tional coupling alter posttranslational dynamics [6,24,25]. How-

ever, it is still not clear how different classes of protein interactions

and co-expression from an operon may interact to alter

biochemical noise.

In this study we assessed these effects for different types of

posttranslational interaction between gene products. In several

types of interactions, the noise difference between cotranscribed

and uncoupled configurations was amplified by the existence of a

zero-order ultrasensitive switch [26]. We related the results to an

intact naturally occurring system with simulations of cotranscribed
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and uncoupled configurations of the lac operon. To test our

predictions bioinformatically, we classified naturally occurring

interacting pairs of E. coli proteins by their type of interaction and

analyzed the effect of chromosomal distance between pairs of

genes with interacting products. Finally, we used single-cell protein

copy number data to determine differences in operon frequencies

at high and low expression levels in E. coli for physically interacting

protein pairs.

Results

Operons correlate intrinsic protein fluctuations
Intrinsic gene expression noise is correlated in a cotranscribed

two-gene configuration, but this correlation was not seen in an

uncoupled configuration. Relationships between the fluctuations of

two proteins can be quantitatively characterized by the covariance

of concentrations for proteins A and B (sAB). Using the linear noise

approximation (LNA; see Materials and Methods) [18,27,28], we

calculated a normalized covariance

nAB:
sAB

SATSBT
~

SABT{SATSBT
SATSBT

~

tmRNA

SmRNAT(tmRNAztprotein)
, if co� transcribed

0, if transcriptionally uncoupled

8<
:

ð1Þ

where angle brackets represent average copy-number of each

molecular species, and tmRNA and tprotein are the characteristic

timescales of mRNA and protein decay. Increased covariance of

cotranscribed genes is preserved regardless of whether the

translation processes are coupled (with a single ribosome binding

site for multiple genes; Figure 1A–C) and regardless of the source

of intrinsic noise (from translational bursting only or from both

transcriptional and translational bursting; Figure 1B–C). We

hypothesized that positive covariance can increase or decrease

CV in relevant network outputs depending on the nature of the

interactions between two proteins.

In addition to covariance, the effect of operons on correlation

between protein copy number fluctuations can be quantified by

another measure, the degree of decorrelation (Text S1). This measure is

useful to characterize the effect of gene expression level on noise

differences between cotranscribed and uncoupled proteins (Table

S1), and to assess the effects of expression level on frequencies of

operon occurrence in bacterial genomes.

Effects of operons on biochemical noise depends on the
type of protein interaction

We surveyed databases of E. coli biochemical networks

[29,30,31] to identify simple two-gene modules of larger networks

that represent different ways that two proteins can directly or

indirectly interact. The modules represent simple models of the

following interactions: catalysis of subsequent steps in a linear

metabolic pathway (Figure 2A), redundant catalysis of the same

metabolic step (Figure 2B), catalysis of diverging reactions

following a branch point in a metabolic pathway (Figure 2C),

redundant transcriptional regulation of a downstream gene

(Figure 2D), physical binding between two proteins (Figure 2E),

and covalent modification of one protein by another (Figure 2F).

The list may not be fully comprehensive, but represents several

classes of interactions between proteins that are building blocks of

larger networks. For each module we constructed a mathematical

model to calculate CV for interacting proteins transcribed from

the same and different operons (hereafter referred to as

cotranscribed and uncoupled configurations, respectively). We

then determined differences in CV for relevant network outputs

between cotranscribed and uncoupled configurations. The simu-

lations were controlled by keeping the same mean and CV for total

protein from each gene between configurations. The CV

calculations were performed at stationary state, both numerically

(stochastic simulation algorithm; [32]) and analytically (LNA [28]

Figure 1. Types of coupling in protein production affect
correlations in their fluctuations. A. Two proteins (A and B) can
have coupled translation (1), coupled transcription with independent
translation events (2), or uncoupled transcription (3). B, C. Scatter plots
showing predicted single-cell distributions of copy numbers for
proteins A and B with different coupling as indicated in models
without (panel B) or with (panel C) transcriptional bursting. For
simplicity, these models do not include extrinsic noise.
doi:10.1371/journal.pcbi.1002672.g001

Author Summary

In some species, most notably bacteria, chromosomal
genes are arranged into clusters called operons. In
operons, the process of transcription is physically coupled:
a single pass of the RNA polymerase enzyme reading that
region of the chromosome simultaneously produces
messenger RNA encoding multiple proteins. So far, we
do not have a satisfying explanation for what evolutionary
forces have maintained operons on bacterial chromo-
somes. We hypothesized that different types of interac-
tions between operon-coded proteins affect how strongly
operons are selected for between two genes. The
proposed mechanism for this effect is that operons
correlate gene expression noise, changing how it mani-
fests in the post-translational network depending on the
type of protein interaction. Mathematical models demon-
strate that operons reduce noise for some types of
interactions but not others. We found that operon-
dependent noise reduction has an underlying dependence
on surprisingly high sensitivity of the network to the ratio
of proteins from each gene. Databases of genetic
information show that E. coli has operons more frequently
than random if operons reduce noise for the type of
interaction various gene pairs have, but not otherwise. Our
study thus provides an example of how the architecture of
post-translational networks affects bacterial evolution.

Biochemical Noise Shapes Bacterial Operons
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using Paulsson’s [18] normalization). The results of the simulations

demonstrate that predicted differences in CV for each metabolic

module depend on the type of interaction between proteins

(Figure 2).

For the linear metabolic pathway module, cotranscription of

two enzymes from the same operon results in lower CV for

metabolic intermediate. Without transcriptional coupling, meta-

bolic intermediate concentrations are prone to large spikes

(Figures 2A and S1A, B, J, K). Notably, no significant differences

between cotranscribed and uncoupled configurations are evident

in metabolic product CV (Figure 2A), indicating that metabolic

flux is not significantly different between the two groups.

Intuitively, a spike occurs when flux from the upstream enzyme

exceeds the maximal flux capacity of the downstream enzyme

resulting in large increase of metabolic intermediate concentra-

tion. This increase exceeds the saturation point for the enzyme

converting it to product, making product concentration insulated

from these spikes.

In contrast, the metabolic modules with redundant enzymes

(Figures 2B and S1C, L) and with a branch point (Figures 2C and

S1D, M) show an increase in metabolite CV when the two

enzymes are in the same operon. In these cases, lower correlations

between enzyme fluctuations reduce the chance of simultaneous

stochastic drops in concentration of both enzymes.

Similarly, cotranscription of multiple (redundant) gene regula-

tors from the same operon results in increased CV in the regulated

gene as compared to the uncoupled regulator configuration

(Figures 2D and S1E, N). Here, we assumed that the gene

regulatory logic was an OR gate (i.e., each regulator by itself or

both together would have the same effect). Noise in the output

from AND gate logic (i.e., a multi-subunit regulator) is expected to

follow the noise pattern of the physical interaction module (below).

Consistent with a previous study [25], the physical protein

interaction module under transcriptional coupling shows a strong

reduction in fluctuations of monomer concentrations. (Figures 2E

and S1F, G, O, P). With strong binding, the concentration of each

free monomer changes from nearly zero when its partner is in

excess to a finite value when the monomer itself is in excess. These

fluctuations are more common when the binding partners are not

in the same operon, so the noise is therefore high. Cotranscription

slightly increases heterodimer CV compared to the uncoupled

configuration (species AB; Figure 2E), but to a much lesser extent

than its reduction of CV in monomer concentrations. In the limit

Figure 2. Noise levels in physiologically relevant variables depend on transcriptional coupling. We computed coefficient of variation
[CV] =s/m, where s is the standard deviation and m is the mean, for simplified modules representing modes of interaction between two proteins: A)
catalysis of subsequent steps in a linear metabolic pathway, B) redundant catalysis of the same metabolic step, C) catalysis of metabolic steps
following a branch point, D) redundant regulation of a downstream gene p encoding protein P, E) physical interactions resulting in heterodimer
formation, and F) covalent modification of one protein by another. In metabolic modules, S, I and P represent substrate, intermediate, and product,
respectively. Complete reaction diagrams and parameters are given in supplemental tables (S4, S5, S6). Error bars represent one standard deviation
from bootstrap resampling. Results correspond to the single ribosome binding site model (translational coupling), but hold qualitatively for multiple
ribosome binding sites as well.
doi:10.1371/journal.pcbi.1002672.g002

Biochemical Noise Shapes Bacterial Operons
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of strong binding, nearly all of one monomer is bound, so the effect

on monomer noise is dominant.

For the covalent modification module (Figures 2F and S1H, I,

Q, R), different gene configurations cause small changes in the CV

of the modified form of protein A (A*) that can be of either sign

depending on parameter values, whereas the unmodified form (A)

has consistently lower CV in the cotranscribed configuration

(Figures 2F and S1H, Q).

Analytical approach confirms predicted effects of
cotranscription on intrinsic noise

The stochastic simulation approach (Figure 2) gives decisive

results, but only for the parameter values tested. To determine

how generally the simulation results hold in the face of different

parameter values, we used the LNA to analytically determine noise

differences (here quantified as CV2) between cotranscribed and

uncoupled forms of each network module. For each molecular

species denoted by j, we calculated the noise difference between

cotranscribed (nC
j ) and uncoupled (nU

j ) configurations as

Dnj~nU
j {nC

j . If the value is positive, the cotranscribed configu-

ration has lower CV2 (and therefore, lower CV); if it is negative,

the uncoupled configuration has lower CV2. A more complete

analysis for each module is presented in Text S2. Here we

highlight the main results.

1. Linear metabolic pathway: We find a lower bound on the

difference in metabolic intermediate:

DvIwwvABw0 ð2Þ

Thus cotranscribed enzymes are generally predicted to have

much lower noise in metabolic intermediate than uncoupled

enzymes.

2. Redundant metabolic step: We find a difference in the product

DvP&{2vABHAPHBP ð3Þ

where HAP and HBP are the logarithmic gains (sensitivities) of

product P to proteins A and B, respectively. Because DvPv0,

the uncoupled configuration is predicted to have lower noise.

3. Metabolic branch point: For substrate noise, we find

Dns&{nAB
2HAsHBs

Hss Hss{1ð Þ ð4Þ

where HAs, HBs, and Hss are the logarithmic gains of substrate

flux ratio (Vz
s

�
V{

s , the ratio of the fluxes producing and

consuming substrate) in response to changes in A, B and s,

respectively. While HAs and HBs are positive, Hss is negative

(Text S2). As the enzymes approach saturation, DHssD becomes

small. As a result, Dns is large and positive, predicting much

lower noise in the uncoupled configuration (Text S2).

4. Multiple gene regulators: The difference for protein production

stimulated by two regulators with OR logic is

DvP~{vABHAmP
HBmP

tmRNA

tmRNAztprotein

ð5Þ

where HAmP
and HBmP

are the logarithmic gains of mRNA

flux ratio (Vz
mRNA

�
V{

mRNA, the ratio of mRNA production and

degradation fluxes) in response to regulators A and B,

respectively. Their absolute values are in the interval [0, 1]

with positive values for activators and negative values for

repressors. Thus, when both regulators are activators or

repressors, DvPv0, predicting more noise if regulators are in

the same operon.

5. Physically interacting proteins: With strong interactions, we

have

DvA~DvB&{vAB
HAB

1{H2
AB

ð6Þ

where HAB is the logarithmic gain of the flux ratio of B

(Vz
B

�
V{

B , the ratio of fluxes producing unbound B to the

fluxes consuming it) to protein A. We show that HAB is negative

with its absolute value approaching 1 from below. Therefore,

DvA&vABw0, predicting that monomer noise is significantly

decreased by covariance. At the same time, the difference in

noise in heterodimer is negative and limited in absolute value

to DDvcomplexDv
vAB

3
, predicting that complex noise slightly

increases with cotranscription.

6. Covalent modification module: We have

DvA�&{vAB
2

HmAz1

DvA&vAB
2(HmA{1)

HmAz1

ð7Þ

where HmA represents the logarithmic gain of Vz
A

�
V{

A (the

ratio of flux producing unmodified protein A to that consuming

it) to concentration of mRNA. For realistic parameter values at

which protein modification flux significantly exceeds the

degradation flux, HmA&1 (Text S1). In this regime, DvA� is

small and negative whereas DvA remains positive and

significant, predicting a lower noise in the cotranscribed

configuration.

To summarize, we found that differences in noise between

cotranscribed and uncoupled configurations in stochastic simula-

tions are qualitatively consistent with the analytical approach.

Notably, in all the cases the magnitude of the differences in CV2

between two configurations is proportional to the value of

covariance vAB, but in many cases the coefficient of proportion-

ality is very large. This qualitatively suggests posttranslational

interactions in some modules are capable of amplifying noise

differences between cotranscribed and uncoupled proteins. How-

ever, the LNA method likely underestimates the magnitude of

non-linear amplification. We further explore these amplification

mechanisms in the next section.

Ultrasensitivity arising in non-redundant protein
interactions

Timecourse simulations predict that uncorrelated fluctuations of

the two enzymes in a linear metabolic pathway result in large

bursts of metabolic intermediate (Figure 3A, B). This suggests that

higher noise in the transcriptionally uncoupled linear metabolic

pathway arises at least in part from the increased probability of

occasionally crossing an ultrasensitive threshold. Indeed, a sharp

threshold in the intermediate of the linear metabolic pathway

arises when the enzyme-mediated consumption of a product

saturates, leading to non-linear degradation [33]. The ultrasensi-

tive threshold is crossed when the downstream enzyme saturates,

and the flux from the upstream enzyme exceeds its maximal value

(V+/V2.1 in Figure 3C). Because V+ and V2 are proportional to

Biochemical Noise Shapes Bacterial Operons
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their enzyme levels, the numerator and denominator of the ratio

fluctuate together when both enzymes are in the same operon.

Therefore transcriptional coupling lowers noise in the flux ratio

and making it unlikely to cross the threshold V+/V2 = 1. When the

enzymes are uncoupled, simulations show more variability in the

V+/V2 ratio, allowing the ratio to cross the threshold with

consequent large spikes in metabolic intermediate. Thus, the

ultrasensitive switch amplifies noise differences already present

between cotranscribed and uncoupled configurations.

Differences in noise between cotranscribed and uncoupled

configurations of all of the non-redundant modules can be

amplified by ultrasensitive switches in a similar manner (Figure

S2). The metabolic branch point module undergoes the same type

of non-linear degradation effect as the linear metabolic pathway,

but in the branch point transcriptionally coupled enzyme pairs are

more likely to fluctuate downward and saturate simultaneously

than uncoupled enzymes. This effect leads to a higher likelihood of

substrate buildup in the cotranscribed configuration (Figure S2B).

The physical interaction and covalent modification modules

undergo molecular titration [34], resulting in an ultrasensitive

switch for monomers (physical interaction module) or unmodified

protein (covalent module) that depends on the ratio of protein

production fluxes (Figure S2C, D). Cotranscription of the two

genes prevents the switch from amplifying transcriptional noise by

reducing fluctuations in this ratio. Sensitivity analysis of mean-field

models shows that the existence of ultrasensitive switches does not

depend on strict parameter regimes (Text S3).

Detailed lac operon model confirms effects of operons
on intrinsic noise in an intact system

To explore how conclusions drawn from models of simple

network modules apply to a more complicated realistic network,

we implemented stochastic simulations of a detailed lac operon

model that is based on a previous deterministic model [35]. The

stochastic model includes enzymatic steps reminiscent of a linear

metabolic pathway with permease-mediated lactose import and

conversion by b-galactosidase to allolactose and b-D-galactose+b-

D-glucose (Figure 4A, Tables S7 and S8). Feedback and gene

regulation are present with derepression of lacY and lacZ

expression caused by allolactose binding to LacI (Figure 4A,

Tables S7 and S8).

We simulated three inducer concentrations representing min-

imal lac operon induction (1.39 mM extracellular lactose concen-

tration or 835 molecules/femtoliter), intermediate induction

(83.0 mM or 50,000 molecules/femtoliter), and excess inducer

with maximal lac operon induction (,5,000 mM or 36106

molecules/femtoliter). Timecourses suggest that transcriptional

coupling between lacY and lacZ (wild-type situation) eliminates the

large fluctuations in allolactose (Figures 4B and S3) and

intracellular lactose (not shown) observed in the transcriptionally

uncoupled form of the system. This is consistent with a reduction

in the correlation between permease and b-galactosidase (lacY and

lacZ gene products, respectively) in time (Figure 4C).

At all inducer concentrations, the uncoupled configuration

displays higher CV in allolactose than did the cotranscribed

configuration (Figure 4D). This difference is most pronounced in

the minimal induction region and gradually reduced with

increasing lacY-lacZ induction. At the same time, there is little

difference in protein CV between cotranscribed and uncoupled

configurations of the model at most inducer levels. In both

configurations the CV monotonically decreases with higher

expression.

The primary consequence of cotranscription of lac proteins in

the same operon is a reduction in fluctuations of intracellular

lactose and allolactose. These fluctuations may prevent disruption

of other sugar uptake pathways by, for example, interfering with

inducer exclusion mechanisms [36]. Physiological benefits of noise

reduction are also consistent with reports that excessive lactose

import is associated with significant lowering of growth rate in E.

coli [37 and references therein,38]. Thus, there may be a selective

pressure to maintain high covariance between permease and b-

Figure 3. An ultrasensitive response amplifies noise differenc-
es between cotranscribed and uncoupled linear metabolic
pathway modules. A. When copy numbers of enzymes A and B are
matched, transient changes in production and consumption flux are
matched, resulting in maintenance of a low concentration of metabolic
intermediate. An increase in expression of A, unmatched by a change in
expression of B, can cause the production flux of metabolic
intermediate to exceed the saturation point of flux through enzyme
B, resulting in accumulation of metabolic intermediate. B. Simulated
timecourse of metabolic intermediate in cotranscribed and uncoupled
configurations of the linear metabolic pathway model. C. Steady state
response of metabolic intermediate to changes in the ratio of
production flux to consumption flux (solid line), with stochastic
simulation timecourses of intermediate in cotranscribed and uncoupled
linear metabolic pathway module configurations plotted with respect
to changing flux balance. Results represent the single ribosome binding
site model (translational coupling), but are qualitatively the same for
multiple ribosome binding sites as well.
doi:10.1371/journal.pcbi.1002672.g003

Biochemical Noise Shapes Bacterial Operons

PLOS Computational Biology | www.ploscompbiol.org 5 August 2012 | Volume 8 | Issue 8 | e1002672



galactosidase resulting from the wild-type genetic structure of the

lac operon.

Operon incidence in E. coli is correlated with noise
reduction

To determine if global operon organization in E. coli correlates

with predicted noise differences, we characterized frequencies of

gene membership in the same operon bioinformatically (Table 1).

We first assigned membership of known E. coli K12 MG1655 [39]

biochemical networks into patterns corresponding to the 2-gene

modules (Figure 2) using data on E. coli operons [31], metabolic

pathways [29], gene regulation networks [31], covalent modifica-

tion [30], and physical protein interactions [40,41]. Many natural

networks fall into more than one class (e.g., common bacterial

signal mediators, two-component systems, have physical interac-

tions between the sensor and the regulator [42] and are also in the

covalent modification class). For the metabolic and gene regulation

network modules, we eliminated physically interacting pairs to

ensure that those included had true functional overlap and were

not acting as subunits of a larger enzyme or regulator. Thus, the

only systems that are members of more than one class are in

members of both the covalent modification and physical

interaction modules. In each class we created controls with

randomized operon assignment of the genes (see Materials and

Methods).

Proteins in the linear metabolic pathway, physical interaction,

and covalent modification modules appear in the same operon

significantly more frequently than do randomized controls

(p,,1026; Table 1). On the other hand, redundant metabolic

nodes and multiple gene regulators are significantly less likely to be

in the same operon than randomized controls (p,,1026; Table 1).

Metabolic branch points show a bias toward being uncoupled, but

falls just short of being statistically significant (p = 0.071). These

findings hold even after we divide each class into essential and

nonessential genes using data from Taniguchi et al [43]; Table S2).

Thus operon overrepresentation, when it occurs, is present in

essential genes, consistent with previous results contradicting the

selfish operon hypothesis [12]. Our results establish a correlation

between operon organization of protein pairs and their function

that is consistent with noise minimization and avoidance of

ultrasensitivity.

Higher incidence of cotranscribed interacting proteins at
low than high expression levels

To separate the specific effect of noise from that of other factors

affecting selection for operons, such as proportional coregulation,

we considered whether the tendency toward operon membership

of posttranslationally interacting protein pairs is related to gene

expression levels [23]. Intrinsic noise is stronger for genes with low

expression levels [43], covariance of protein concentrations is

more pronounced (Equation 1) and the degree of decorrelation is

higher (Table S1). Therefore, if noise is an evolutionary factor

driving operon formation, levels of gene expression may be

inversely correlated with operon patterns. On the other hand, if

coregulation of mean expression levels is the dominant factor in

selecting for operons, the frequency of transcriptional coupling

may be directly correlated with gene expression levels because the

cost of differential regulation would be highest at the highest

expression levels. As a result, any trend in coupling frequencies

with gene expression levels would favor one hypothesis and

disfavor the other.

We used a dataset of average single-cell mRNA and protein

copy numbers in E. coli [43] to explore this trend for constitutively

expressed physically interacting protein pairs (other network

modules have insufficient data for such analysis). Because different

conditions can shift gene expression levels and the dataset is only

available for one condition, we chose to focus on the subset of

interacting proteins that are constitutive, i.e., not predicted to

undergo any regulation in RegulonDB. Each gene’s protein or

mRNA copy number was considered once, along with a binary

variable indicating whether or not the protein product interacts

with a same or non-same operon protein. Further details are given

in Materials and Methods.

We divided the set into two subsets of expression level, one

below and one above the median copy number (Figure 5). The

Figure 4. Allolactose noise depends on transcriptional cou-
pling in simulations of the E. coli lac operon. A. Simplified reaction
diagram of the model used. The complete reaction scheme and
parameter values are given in Tables S7 and S8. Arrows depict flux
arising from the mechanisms in the model. B. Predicted dynamics of
allolactose (Alac) and permease (LacY) in excess inducer (extracellular
lactose at 5,000 mM) are represented by 20 individual timecourses. C.
Time correlation between permease and b-galactosidase (LacZ) for 100
timecourses. Error bars represent standard error of the mean. D.
Coefficients of variation (CV =s/m, where s is the standard deviation
and m is the mean) of metabolite allolactose at three extracellular
lactose concentrations. E. CV of permease protein at three extracellular
lactose concentrations. Bootstrapped mean and standard deviation of
CVs (red bars in panels D and E) diverge from simulated CV when the
distribution is highly skewed. Concentration 1.39 mM represents
minimal induction of the lac operon; 83.0 mM represents mid-range
induction; and 5,000 mM represents an excess of inducer with maximal
lac operon induction. Error bars represent one standard deviation from
bootstrap resampling.
doi:10.1371/journal.pcbi.1002672.g004

Biochemical Noise Shapes Bacterial Operons
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fraction of protein pairs sharing the same operon is higher in the

low-expression subset for protein (bootstrap test p,0.01) and

mRNA (bootstrap test p,0.05) copy numbers. This suggests that

evolutionary selection against decorrelation (Table S1) significantly

contributes to maintenance of operons in the chromosome.

Discussion

A longstanding question in evolutionary biology is how non-

transcriptional dynamics [44] affect selection of particular genetic

architectures. By relating chromosomal patterns to protein

network structures in E. coli, we see a compelling case for post-

translational dynamics altering the probability of operon mem-

bership of genes depending on the nature of their interaction.

Covariance and noise reduction in non-redundant
interactions

Because enzymes often operate close to saturation [45],

resolving metabolic flux imbalances may prevent widespread

accumulation of intermediate, which is potentially toxic

[46,47,48]. Simulations of a detailed lac operon model in our

study corroborate the results of the simpler linear metabolic

module, suggesting a role for intrinsic noise in selecting for lac

operon architecture (in addition to the stochastic effects previously

examined in this system [49]). Simulations that include extrinsic

noise as a correlating factor indicate that it does not reduce

metabolite noise as well as the stronger correlations caused by

cotranscription (Text S4, Figure S4).

Many metabolic operons are large (and with complex evolu-

tionary histories; [50]), but the length of a metabolic pathway is

often longer than that of a typical operon, leading to the question

of where optimal operon break points for metabolic pathways may

lie. Our results suggest that break points occur predominantly

where the intermediate is not toxic or where it is processed by

multiple downstream enzymes, such as at branch points and

metabolic steps with redundant enzymes. Metabolite spikes could

also potentially be buffered by reversibility of catalytic reactions,

though the reversible step in the lac operon did not prevent

intermediate spikes. Furthermore, if portions of metabolic

pathways that are divided by intermediates with relatively low

toxicity undergo upregulation as needed, there may be a trade-off

between reduction of toxic intermediate spikes and just-in-time

transcription [51] in the evolution of metabolic networks.

Our analysis suggests that pairs of enzymes after a branch point

can have lower noise (CV) if they are not cotranscribed (Figure 2C),

but with a less consistent CV difference between cotranscribed and

uncoupled configurations than the other modules (Figure S1 D,M).

Therefore, the noise hypothesis predicts patterns of transcriptional

coupling to be weaker than in other modules, as we observe to be

the case in E. coli (Table 1).

The simple physical protein interaction module in our study

(Figure 2E) may result in one of two different types of

physiologically meaningful output variables: an active heterodi-

mer, in which the genes make up subunits of a functional complex,

or an active monomer, in which its activity is negatively regulated

by the binding partner (as with sigma-antisigma systems [52]). In

either case reduction in monomer noise is justified; in the latter

case, to reduce noise in the physiologically relevant output. In the

former case, lower noise represents a reduction in inefficient

protein production that can reduce promiscuous interactions with

other parts of the network. Heterodimer noise is smaller for the

uncoupled configuration because upward fluctuations in its

concentration are limited to being no larger than the minimum

of [A] and [B] and those concentrations are less likely to

simultaneously fluctuate upward simultaneously.

The covalent modification system (Figure 2F) in its uncoupled

configuration has reduced fluctuations in the unmodified protein

(A) compared with the uncoupled configuration. Noise effects of

transcriptional coupling may therefore be important in covalent

modification systems where the unmodified form of the protein is

capable of interacting with other systems (Text S2).

Higher-order chromosome structure, such as bacterial chroma-

tin [53,54] and regulatory factors such as bidirectional promoters

Table 1. Operon organization trends in E. coli relate to noise-minimizing transcriptional coupling patterns.

Network module Low noise configuration Number of pairs f a frand (m ± s) Trend in E. coli b

A. Linear metabolic pathway Coupled 2471 0.038 0.003660.0011 Coupled (,,1026)

B. Redundant enzymes Uncoupled 114 0 0.0160.00094 Uncoupled (,,1026)

C. Metabolic branch point Uncoupled 2036 0.0025 0.004760.0015 Uncoupled (0.071)

D. Multiple gene regulators Uncoupled 1368 0.0015 0.04360.0054 Uncoupled (,,1026)

E. Physical interaction Coupled 3938 0.35 0.003060.00073 Coupled (,,1026)

F. Covalent modification Coupled 201 0.23 0.004760.0047 Coupled (,,1026)

aSame operon pair fraction.
bNumbers represent p-value vs rand.
doi:10.1371/journal.pcbi.1002672.t001

Figure 5. Dependence on expression level for frequencies of
gene pairs of physically interacting proteins sharing operons.
A dataset of single-cell protein and mRNA copy numbers in E. coli [43]
shows reduced frequency of coupling for abundant proteins (A) and
mRNA (B). Error bars represent one standard deviation from boot-
strapping the data 1,000 times. Significance levels were determined by
a bootstrap test.
doi:10.1371/journal.pcbi.1002672.g005

Biochemical Noise Shapes Bacterial Operons

PLOS Computational Biology | www.ploscompbiol.org 7 August 2012 | Volume 8 | Issue 8 | e1002672



and transcriptional terminators [55] affect the spatial proximity of

genes. Operons could also play a role in spatial proximity, as

suggested by the selfish operon hypothesis [10]. We explored

whether chromosomal proximity can explain operon membership

in linear metabolic and physically interacting gene pairs. Our

bioinformatic analysis suggests that the prevalence of operons

cannot be solely explained by a proximity bias of interacting gene

pairs in the E. coli chromosome (Text S4, Figure S5).

Noise differences in non-redundant modules arise from
ultrasensitivity

A striking feature of the non-redundant protein interaction

modules is that they all contain a zero-order ultrasensitive switch,

which arises as a side-effect of saturation. This effect amplifies

differences in CV between cotranscribed and uncoupled forms of

the modules (Figures 3 and S2) and may degrade performance

when its threshold is crossed. In each two-gene module, the

operon architecture that avoids crossing the ultrasensitive thresh-

old is significantly over-represented in E. coli (Table 1). Signatures

of selection against noise in these modules thus likely represent

selection against performance-degrading ultrasensitivity as well.

Gene expression level and operon prevalence
Gene pairs encoding constitutive physically interacting proteins are

significantly more likely to be in the same operon if their expression

levels are low (Figure 5). This trend could be explained by slow protein

diffusion in the crowded intracellular environment, as cotranscribed

gene products are more likely to be present at the same subcellular

location. However even slow diffusion (,1 mm2/s) across a typical

bacterial length of ,1 mm is much faster than the expected time lag

between translation of two proteins given typical ribosomal speeds of

12–21 AA/s [56]. Therefore, increased biochemical noise (here,

measured as decorrelations between uncoupled proteins) at low

expression levels are the most likely explanation of the observed trend.

We argue that these noise effects are detrimental to the performance of

some protein interaction networks.

The opposite trend would be expected if proportional expres-

sion of mean concentrations or other mechanisms are the primary

selective pressure on operon maintenance. In general, genes with

high expression levels may operate under greater evolutionary

pressure than genes with low expression levels [57,58] and

therefore their deviation from optimal chromosomal organization

is less likely. Arguably, noise minimization is the only selective

force that is expected to be more important for genes with low

expression levels than for genes with high expression levels [23].

Redundant proteins and selection against operons
Partial functional redundancy of proteins allows one protein to

compensate for a downward fluctuation in concentration of the

other protein, thereby reducing noise with uncorrelated protein

fluctuations (Table 1; Figure 2). Therefore, just as noise

minimization may explain operon membership for non-redundant

interactions, it may also explain the lack of redundant proteins in

operons. Differential regulation of the genes can additionally play

an important role in keeping redundant interactions transcrip-

tionally uncoupled. In yeast metabolic pathways, apparently

redundant enzymes are differentially expressed in different

pathways depending on external conditions [59]. This type of

mechanism, if present in E. coli, may also explain why no

redundant enzymes are in the same operon. Similarly, different

growth conditions may result in different regulators affecting

downstream expression of the same genes. Further work is

necessary to distinguish the noise reduction hypothesis more

decisively from differential gene regulation as a selective force in

redundant pairs; differential regulation may be physiologically

important in some cases and not in others.

Eukaryotes, operons, and noise
Improvement of dynamic performance of simple networks

arising from cotranscription of interacting genes from the same

operon raises the question of why operons are rare in eukaryotes.

Eukaryotic cell volumes are much higher than prokaryotes, likely

lowering the effect of intrinsic noise relative to the dominant effect

of extrinsic noise [60]. Nevertheless, such benefits may still be

present in some systems, and there are mechanisms that allow

correlating gene expression noise in eukaryotic cells without

polycistronic loci. Genes located near each other have correlated

transcriptional bursts that likely arise from chromatin decondensa-

tion [61,62]. Clusters of co-expressed genes, particularly metabolic

genes, appear in eukaryotic chromosomes at a rate higher than

would be expected randomly [63,64]. Co-expressed, functionally

related genes at distant genomic loci also appear to migrate

together for co-transcription from discrete transcription initiation

complexes [65,66,67]. These mechanisms, arising from the

increased size and structural complexity of eukaryotic chromatin

over prokaryotic chromosomes, can correlate gene expression

noise with similar dynamic benefits to operons.

Concluding remarks
We have developed a theory predicting that operon member-

ship can increase or decrease noise in different types of protein

interactions. Bioinformatic analysis finds that naturally occurring

operon patterns in E. coli correlate with reduction of biochemical

noise. Nevertheless, it would be interesting to explore operon

coupling frequencies in bacterial stress response systems known to

favor population-level heterogeneity, such as stress responses in B.

subtilis; the amplification of noise by underlying ultrasensitive

switches in non-redundant network modules may be a potential

mechanism of population-level heterogeneity.

The existence of implicit ultrasensitive switches also under-

scores the idea that dramatic non-linearities are likely present in

many simple protein interaction networks. Our results suggest

that ultrasensitive switches are likely undetectable in the wild-type

configurations of well-adapted systems as a result of selection

against them, but may be present in conditions with lower

selective pressure, or recent evolutionary events. These switches

nevertheless have important implications for genome evolution.

Their effects, and the mechanisms for avoiding them, may in turn

shape larger biochemical networks by changing global noise

properties, and will be an important factor in designing synthetic

networks.

Materials and Methods

Symbolic manipulations and data analysis were performed in

Mathematica 7.0 and 8.0 (Wolfram Research, Champagne, IL).

We predicted intrinsic noise characteristics with stochastic

simulations at stationary state using the StochKit (http://

engineering.ucsb.edu/̃cse/StochKit/) tau-leaping routine for

10,000 runs of each model (except in the lac operon model, for

which 1,000 runs of each condition were done). Initial model

construction and test runs were done with Copasi (www.copasi.

org). Simulations with an extrinsic noise representation were done

in Copasi as detailed below. All models were represented with

elementary reaction steps; in models involving gene regulation, we

defined a promoter variable as always present at one copy per cell.
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Stochastic simulations
Unless otherwise specified, each network module was tested

with promoter-mediated noise, represented by promoters switch-

ing between ‘‘on’’ and ‘‘off’’ states of mRNA production. This

process has estimated switching rates of kgoff = 0.0028 s21 for

switching to the ‘‘off’’ state and kgon = 0.00045 s21 for switching to

the ‘‘on’’ state [20]. In models including a gene regulation step, we

assumed binding and unbinding of regulators to be independent of

promoters switching between on and off states. Without promoter-

generated bursting, gene expression noise largely arises from low

mRNA copy numbers per cell and the effect of transcriptional

coupling is qualitatively similar (Figure 1). Furthermore, analytical

results from LNA do not include the effects of bursty transcription,

showing that we arrive at qualitatively similar results without

transcriptional bursts.

We distinguish between three types of coupling between

production of two proteins in stochastic simulation reaction

schemes. Transcription may be coupled or uncoupled (i.e., proteins

in the same or separate operons) and when transcription is coupled,

proteins may be cotranslated (single ribosome binding site for both)

or translationally uncoupled (two ribosome binding sites). These

three cases represent simplified extremes; intermediate translational

linkage (e.g., read-through from multiple ribosome binding sites) is

possible but was not further considered here. Figure 1 illustrates the

three cases with promoter-mediated gene expression noise. For

simplicity of presentation, we compare transcriptionally uncoupled

with cotranslated models in the main text.

Tables S4, S5, S6, S7, S8 give reaction schematics and

parameters for the gene expression and posttranslational models

used in the main text. Parameter values were chosen to be of the

correct order of magnitude for realistic expression levels and

binding kinetics. To ensure a fair comparison between cotran-

scribed and uncoupled configurations, production and degrada-

tion rates of mRNA species for proteins A and B are identical. The

degradation rate kdeg corresponds to the value expected from a

dilution rate for typical E. coli doubling every half hour.

Analytical determination of protein covariance
The basis of noise differences between networks with proteins in

the same operon and those with proteins in separate operons is the

covariance between the expressed proteins. We used LNA to

analytically characterize noise and covariance as follows. For the

mean values of copy numbers (denoted by angular brackets):

d

dt

Sm1T
SAT
Sm2T
SBT

2
6664

3
7775~

km{kmdegSm1T
ktsnSm1T{kdegSAT

km{kmdegSm2T
kmSmiT{kmdegSBT

2
6664

3
7775 ð8Þ

where i = 1 with proteins A and B in the same operon, and i = 2

with proteins A and B in separate operons. Then we solved the

fluctuation-dissipation matrix equation at steady state

(Ms+sMT+VN = 0) for s, where M is the Jacobian of the

(macroscopic) system, V is cell volume, and N is the diffusion

matrix [18]. Characterizing intrinsic noise as vj~CV2
j ~sjj

.
m2

j

and vij~sij

�
(mimj) with indices i and j taking values corresponding

to molecular species (A, B, m1 and m2), we follow the methods of

[18] to obtain:

vA~
sAA

SAT2
~

1

SAT
z

tmRNA

Sm1T(tmRNAztprotein)
: ð9Þ

and vAB as in Equation 1. Note that sAA is the variance, or the

square of the standard deviation.

To analytically approximate noise of physiologically relevant

variables in the simple network modules (Figure 2), we made the

following simplifications to make the systems tractable. For

metabolic steps with a substrate as a dependent variable, we

assumed a Michaelis-Menten propensity. For the covalent

modification module, we assumed a simple mass-action with no

saturation or complexes. For the multiple gene regulator module,

we used a Hill equation propensity for regulated mRNA

production. Details of the analysis are in Text S2. Mean-field

models are given in Table S3.

Trends in E. coli K12 MG1655 genes
Bioinformatic analyses used pairs of interacting genes extracted

from databases of E. coli K12 MG1655 as described below. To

determine the randomized control, we needed to account for

potential biases resulting from dataset size and other features of

chromosome organization that we were not attempting to test. For

instance, if we randomly assigned genes to extant operons in E. coli

across the entire chromosome, the less frequently occurring

modules would have much less same-operon membership than

the modules with larger numbers of members, and would not be a

useful control. We chose to randomize the genes extracted from

the pairs within each module to set the random control for each

class. Thus, for a list of gene pairs

g~ g11, g12ð Þ, g21, g22ð Þ, . . . , gn1, gn2ð Þf g

we determined a randomized case by flattening g into

gf~ g11, g12, g21, g22, . . . , gn1, gn2f g,

randomly permuting the order of the genes and then re-pairing

them to determine the frequency. This process was repeated 1000

times to determine the parameters of the randomized distribution.

Metabolic networks. The E. coli metabolic network was

extracted from Kyoto Encyclopedia of Genes and Genomes

(KEGG; [29]). We partitioned the network into pairs of adjacent

steps and assigned a value of 1 to each pair in the same operon

(using the operon membership dataset from RegulonDB; [31])

and 0 to each pair in separate operons. This gave a frequency fmet

of subsequent same-operon metabolic steps. Several metabolic

steps were found to be catalyzed by enzymes with subunits from

multiple genes. Because such interactions have a large bias in

favor of operon membership (Table 1), we eliminated them from

the analysis to ensure operon membership biases result from

metabolic, and not physical, interactions. We then repeatedly

randomly assigned the metabolic enzymes to operons to generate

a predicted distribution of background operon membership. The

resulting distribution is approximately normal, allowing a

parametric determination of fmet significance (fmet = 91/

2417 = 0.038; mean mr = 0.0036; standard deviation

sr = 0.0011; p,,1026).

We extracted pairs of enzymes catalyzing the same metabolic

step from the database to assess the trend in redundant metabolic

steps. Here, fredundant = 0/114. The resulting randomized distri-

bution had mean mr = 0.0047; standard deviation sr = 0.0015

(p,,1026 against this distribution). Enzymes catalyzing steps

after a metabolic branch point were determined on the basis of

common substrates in KEGG (fbranch = 5/2036; p = 0.071 against a

randomized operon membership set of the same genes).
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Covalent modifications. Extracting examples of this inter-

action type from databases is difficult because of the complex

nature of the relationship, which requires interaction with

subsequent modification. We used the MultiFun Gene Ontology

from EcoCyc [30] to identify protein-related information transfer

systems, each of which we manually checked to eliminate

irrelevant cases and identify operon membership of the pair.

Forty-six of the 201 pairs (23%) had interactions within the same

operon. Because some of the identified members have multiple

interaction pairs that could not be identified, the 46/201 fraction

is somewhat uncertain. Unlike any of the other interaction

modules, this module has pairs that overlap with another module

(specifically, the physical interaction module). We used the same

randomization procedure as for the metabolic pairs above to test

the fraction relative to a randomized case of the covalent

modification genes. With mc = 0.0047, sc = 0.0047, and

p,,1026, the true fraction is likely greater than the randomized

control.

Multiple gene regulators. We used the E. coli gene

regulation network from RegulonDB [31] to construct a graph

of genes regulated by two or more regulators, excluding pairs that

form subunits of a larger regulator. Following the method for

metabolic networks, we assigned to each pair a value of 1 if the

regulators are in the same operon and 0 if the regulators are in

separate operons, giving frequency fg = 2/350 = 0.0057. Here, the

random distribution has mrg = 0.099, srg = 0.016, and p,,1026.

Physical protein interactions. For physical protein inter-

actions we used a functional interaction dataset [40,41] to

characterize the frequency of same-operon pairs, fp = 0.35. In

the randomized distribution, mp = 0.0030, sp = 0.00073, and

p,,1026.

Operon relationship to protein copy number per cell
We extracted single-cell mRNA expression data (RNAseq) and

protein copy number data from Taniguchi et al [43]. To ensure a

meaningful comparison of expression levels, we considered only

genes predicted to be unregulated in RegulonDB. Only the physical

interaction module left enough data for analysis. For instance, the

number of unregulated pairs in the same operon for the linear

metabolic pathway dataset was 5, insufficient to distinguish the

established operon membership pattern from noise when parti-

tioned between high and low expression. Each average single-cell

mRNA or protein copy number was used, along with physical

interaction status (1 = same operon; 0 = non-same operon). Proteins

with multiple interaction partners within and between operons were

represented twice, once for same-operon and once for non-same-

operon interaction. We then divided the set into above- and below-

median subsets and compared the fraction of same-operon

interactions in the subsets using a standard bootstrap resampling

test. We resampled 10,000 times with replacement and computed

the difference in coupling frequencies between low and high

expression as the test statistic. To compute error bars, we used

bootstrapping of each bin by sampling each bin with replacement

up to the bin size, repeated 1,000 times.

Supporting Information

Figure S1 Conservation of noise relationships in network

modules across expression level and parameter variations.

Percentage noise difference is given by
CVL{CVU

CVL

; blue shades

indicate lower CV for the coupled architecture; red, lower CV for

the uncoupled architecture. A, J. Intermediate in linear metabolic

pathway. Parameter: kcat2. The distributions at low expression

level are highly skewed, giving misleading CV values that do not

accurately reflect the higher variability in the uncoupled

architecture. B, K. Product of metabolic pathway. Parameter:

kcat2. C, L. Product of redundant metabolic step. Parameter: kcat1

and kcat2 varied simultaneously. D, M. Substrate of a metabolic

branch point. Some cases have lower CV in the co-transcribed

model because the distribution is bimodal, but the uncoupled

model predicts lower actual variability than the co-transcribed

model in all cases. Parameter: kcat1 and kcat2 varied simultaneously.

E, N. Protein product of multiple gene regulator network.

Parameter: kd. F, O. Monomer of physical protein interaction

module. Parameter: kb. G, P. Heterodimer of physical protein

interaction module. Parameter: kb. H, Q. Unmodified protein of

covalent modification network. Parameter: kp. I, R. Modified

protein of covalent modification network. Parameter: kp The scale

for each variable was set by the largest absolute value. Expression

levels (protein copy number/gene/cell) for multiple gene

regulator module: L: 1 M: 53 H: 529. For all others: L: 53 M:

529 H: 5285.

(PNG)

Figure S2 Non-redundant two-gene modules undergo an

ultrasensitive switch dependent on production and degradation

fluxes. Black lines are the mean-field steady state response while

orange and blue lines trace timecourses from individual stochastic

simulation trajectories. A. Intermediate in the linear metabolic

pathway repeated from Figure 3C in the main text. B. Substrate

levels at a metabolic branch point in response to changes in the

balance between production and total consumption by two

enzymes. Spikes are more likely when enzyme-mediated con-

sumption fluxes at the branch point covary. C. Quantities of

monomer subunit A of a heterodimer in response to different

relative levels of A and B monomers. Physically interacting

proteins produced asynchronously cross an ultrasensitive thresh-

old, which is avoided by cotranscription from the same operon.

D. Response of unmodified protein A in the covalent modification

module to changes in the ratio of A to B. Unmodified protein A

undergoes large spikes corresponding to crossing an ultrasensitive

threshold when uncoupled.

(PNG)

Figure S3 Predicted dynamics of the lac operon system at three

inducer concentrations. A. Simulated time courses of permease,

allolactose and product. At all three concentrations, the transcrip-

tionally uncoupled form of the system induces higher noise in

allolactose (metabolic intermediate) concentration, but not product

(glucose+galactose) or protein (permease). B. Correlations between

permease and b-galactosidase in cotranscribed and uncoupled

configurations. Throughout the range of induction the system

demonstrates a consistent, significant reduction of correlation

between permease and b-galactosidase in the uncoupled form of

the system.

(PNG)

Figure S4 Effects of extrinsic noise on transcriptional coupling

dynamics for metabolic modules. A. Linear metabolic pathway. B.

Redundant metabolic step. Translational and transcriptional rate

constants were randomly selected from uniform distributions to

mimic global extrinsic noise. The resulting transcriptionally

uncoupled protein distributions show a slight correlation between

the proteins A and B (r = 0.293 top panel simulations and 0.388 in

the bottom simulations). Metabolite noise differences between co-

translated and transcriptionally uncoupled architectures are

qualitatively unchanged from simulations that do not simulate

extrinsic noise, with lower intermediate CV in the linear metabolic
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pathway (A) and higher product CV in the redundant metabolic

step (B) in the cotranscribed configuration.

(PNG)

Figure S5 Distributions of linear metabolic and physically

interacting protein pair interaction chromosomal locus distances

in E. coli K12 MG1655. A. Gene pair locus distances in linear

metabolic interactions are not distinguishable from randomized

distances. B. A subset of gene pair locus distances in physical

protein interactions have a distinct bias toward close chromosomal

proximity. A distance randomization procedure (Text S4) does not

indicate that proximity explains operon frequencies in either case.

(PNG)

Table S1 Predicted level of decorrelation between proteins that

are uncoupled, cotranscribed, or cotranslated, with or without

transcriptional bursting.

(PDF)

Table S2 Essential and nonessential subsets of gene pairs both

have significantly high fractions of same-operon pairs f.

(PDF)

Table S3 Mathematical models used for linear noise approxi-

mation of five simple network motifs in the form
dy
I

dt
~R.

(PDF)

Table S4 Reactions for two genes expressed from the same and

separate operons.

(PDF)

Table S5 Post-translational interactions in the linear and

redundant metabolic step models.

(PDF)

Table S6 Post-translational interactions in the covalent modifi-

cation and physical interaction models.

(PDF)

Table S7 Detailed lac operon model.

(PDF)

Table S8 Parameter values for detailed lac operon simulations.

(PDF)

Text S1 Decorrelation, extrinsic noise and expression levels.

(PDF)

Text S2 Analytical approach confirms predicted effects of

cotranscription on intrinsic noise.

(PDF)

Text S3 Analytical determination of ultrasensitive thresholds.

(PDF)

Text S4 Chromosomal proximity of genes does not explain

frequencies of metabolic or physical interaction operons.

(PDF)
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landscape of a molecular pathway. PLoS Genet 7: e1002160.

38. Eames M, Kortemme T (2012) Cost-benefit tradeoffs in engineered lac operons.
Science 336: 911–915.

39. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, et al. (1997) The
complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462.

40. Butland G, Peregrı́n-Alvarez JM, Li J, Yang W, Yang X, et al. (2005) Interaction

network containing conserved and essential protein complexes in Escherichia
coli. Nature 433: 531–537.

41. Peregrı́n-Alvarez JM, Xiong X, Su C, Parkinson J (2009) The modular
organization of protein interactions in Escherichia coli. PLoS Comput Biol 5:

e1000523.
42. Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opinion

Struct Biol 17: 755–760.

43. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, et al. (2010) Quantifying E.

coli proteome and transcriptome with single-molecule sensitivity in single cells.

Science 329: 533–538.
44. Ray JCJ, Tabor JJ, Igoshin OA (2011) Non-transcriptional regulatory processes

shape transcriptional network dynamics. Nat Rev Microbiol 9: 817–828.

45. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, et al. (2009)
Absolute metabolite concentrations and implied enzyme active site occupancy in

Escherichia coli. Nat Chem Biol 5: 593–599.
46. Fell DA (1996) Understanding the Control of Metabolism. London, UK:

Portland Press.
47. Levine E, Hwa T (2007) Stochastic fluctuations in metabolic pathways. Proc

Natl Acad Sci U S A 104: 9224–9229.

48. Lee SJ, Trostel A, Le P, Harinarayanan R, FitzGerald PC, et al. (2009) Cellular
stress created by intermediary metabolite imbalances. Proc Natl Acad Sci U S A

106: 19515–19520.
49. van Hoek M, Hogeweg P (2007) The effect of stochasticity on the lac operon: an

evolutionary perspective. PLoS Comput Biol 3: e111.
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