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Abstract

During most infections, the population of immune cells known as macrophages are key to taking up and killing bacteria as an integral

part of the immune response. However, during infection with Mycobacterium tuberculosis (Mtb), host macrophages serve as the preferred

environment for mycobacterial growth. Further, killing of Mtb by macrophages is impaired unless they become activated. Activation is

induced by stimulation from bacterial antigens and inflammatory cytokines derived from helper T cells. The key macrophage-activating

cytokines in Mtb infection are tumor necrosis factor-a (TNF) and interferon (IFN)-g. Due to differences in cellular sources and secretion

pathways for TNF and IFN-g, the possibility of heterogeneous cytokine distributions exists, suggesting that the timing of macrophage

activation from these signals may affect activation kinetics and thus impact the outcome of Mtb infection. Here we use a mathematical

model to show that negative feedback from production of nitric oxide (the key mediator of mycobacterial killing) that typically optimizes

macrophage responses to activating stimuli may reduce effective killing of Mtb. Statistical sensitivity analysis predicts that if TNF and

IFN-g signals precede infection, the level of negative feedback may have a strong effect on how effectively macrophages kill Mtb.

However, this effect is relaxed when IFN-g or TNF+IFN-g signals are received coincident with infection. Under these conditions, the

model suggests that negative feedback induces fast responses and an initial overshoot of nitric oxide production for given doses of TNF

and IFN-g, favoring killing of Mtb. Together, our results suggest that direct entry of macrophages into a granuloma site (and not distal

to it) from lung vascular sources represents a preferred host strategy for mycobacterial control. We examine implications of these results

in establishment of latent Mtb infection.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

During most bacterial infections, the population of host
immune cells known as macrophages (Mfs) internalize and
kill bacteria as an integral part of the innate immune
response. However, during infection with Mycobacterium

tuberculosis (Mtb), Mfs are both the preferred environ-
ment for growth (Collins and Kaufmann, 2001) and the
primary immune cell responsible for its control (reviewed
in Chan and Flynn, 2004). Killing of Mtb by Mfs is
impaired except under conditions of appropriate activation
e front matter r 2008 Elsevier Ltd. All rights reserved.
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that occurs during adaptive immunity. In previous work,
we predicted that the evolution of Mf activation has
favored a robust quiescent state to prevent excessive
activation in most situations (Ray and Kirschner, 2006);
however, this design may benefit Mtb infection.
In mouse models of Mtb infection, Mfs require at least

two complementary activation signals to become effective
at killing Mtb (Cooper et al., 1993; Heldwein and Fenton,
2002). One of the signals, interferon (IFN)-g, is secreted by
activated T cells directly to the immunological synapse
(Huse et al., 2006), which forms at the interface with
antigen presenting cells such as Mfs. In contrast, tumor
necrosis factor (TNF)-a, a complementary signal to IFN-g
for effective Mtb killing by Mfs, was shown to be secreted
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multi-directionally from T cells (Huse et al., 2006), and is
also produced by activated Mfs (Decker et al., 1987).
Concentrations and distributions of cytokines at the site of
Mtb infection in the lungs are difficult or impossible to
determine. Due to possible different spatial distributions of
TNF and IFN-g arising from their production pathways,
timing of different activation signals received by the Mf
may alter the kinetics of Mf activation and the success of
responses to Mtb.

To test this hypothesis, we examined differences between
three relevant Mf activation scenarios based on timing of
receipt of the activating cytokine signals TNF and IFN-g
(Fig. 1). The scenarios each posit a distinct possibility for
when Mfs encounter these two cytokine signals in the
course of an ongoing infection with adaptive immunity
relative to when infection occurs. In Scenario 1, IFN-g and
TNF signals both precede infection of Mfs (i.e. when Mfs
internalize Mtb). This case may occur during very strong
immune responses with high systemic cytokine levels. In
Scenario 2, Mfs receive a TNF signal before infection
while targeted secretion of IFN-g occurs concurrent with
Mtb infection. This case represents activation from Mf-
derived TNF flanking the infection site and/or targeted
secretion preventing wide IFN-g distribution. Mfs may
also receive both TNF and IFN-g at the time of infection
(i.e. at the time of Mtb uptake; Scenario 3). This represents
recruitment of monocytes (which become Mfs) directly
to the site of infection without prior cytokine exposure.
A fourth scenario, where IFN-g is received before TNF, is
Fig. 1. Simulated experimental scenarios for macrophage activation that

depend on the timing of IFN-g and TNF signaling relative to infection.

‘‘Infection Outcome’’ refers to the success or failure of macrophage

responses, measured by the number of intracellular bacteria. In Scenario 1,

TNF and IFN-g signaling precedes infection. Scenario 2 represents

targeted secretion of IFN-g at the time of infection with TNF stimulation

preceding. Scenario 3 represents TNF and IFN-g signaling both

concurrent with infection. The control scenario represents no cytokines

present as is the case during an innate response. In this case, the only

activation signal is derived from mycobacteria during infection. After

macrophages initially receive a given signal, we assume that signal is

persistent.
omitted since targeted IFN-g secretion combined with
TNF derived from Mfs make this scenario unlikely. These
scenarios may occur simultaneously in the same infection,
but preferentially allowing favorable scenarios may repre-
sent an activation strategy for the host. A scenario without
TNF and IFN-g serves as a negative control (labeled
Control in Fig. 1). We use a simple mathematical model
describing Mf–Mtb interactions at the cellular level that is
analogous to an Mf cell-culture system. Each scenario is
determined by experimenter-controlled variables in the
model. We measure the effectiveness of the scenarios by
the number of Mtb within Mfs 100 h post-infection in the
model.
In mouse models, TNF and IFN-g induce production of

nitric oxide (NO), which is necessary for killing of Mtb
(Nathan and Shiloh, 2000). NO and some reactive nitrogen
intermediates (RNIs) derived from it are effective at killing
Mtb in vitro (Yu et al., 1999), but other anti-microbial
molecules are not (Bryk et al., 2000; Ehrt et al., 1997;
Nathan and Shiloh, 2000; Ruan et al., 1999; Springer et al.,
2001). NO or RNIs may also induce a latent phase of the
Mtb growth cycle (Couture et al., 1999; Ohno et al., 2003).
As previously described (Ray and Kirschner, 2006), nitric
oxide production primarily involves three main functional
activities in Mfs: activation signaling, transcriptional
regulation of killing, and intracellular iron regulation.
These Mf activities are connected by regulatory interac-
tions that result in feedback (Fig. 2).
Two intracellular signaling mechanisms are primarily

involved in activation of NO production in Mfs: NF-kB
and Stat1. The NF-kB pathway is induced by bacterial
antigens (such as LPS or LAM) (Fujihara et al., 2003;
Heldwein and Fenton, 2002; Means et al., 1999) or TNF
(Ding et al., 1988; Nathan et al., 1983; Sato et al., 1998)
while Stat1 is activated by IFN-g (Aaronson and Horvath,
2002; Cooper et al., 1993; Flesch and Kaufmann, 1987;
Rook et al., 1986). These two signal pathways synergisti-
cally activate inducible nitric oxide synthase (iNOS)
(Lorsbach et al., 1993), the enzymatic producer of NO.
Intracellular iron homeostasis is co-regulated with NO

production (Kim and Ponka, 2003; Weiss et al., 1994). This
allows internalization of extracellular (transferrin-bound)
iron into the intracellular labile iron pool (LIP), where it
ultimately becomes chelated into ferritin (Harrison and
Arosio, 1996). The LIP regulates C/EBP-b (NF-IL6),
which is necessary, but not sufficient, for iNOS transcrip-
tion (Hentze and Kuhn, 1996). Iron is also a limiting
nutrient for growth of Mtb and other intracellular
pathogens (Schaible and Kaufmann, 2004) and intracel-
lular mycobacteria remove iron from the LIP (Olakanmi
et al., 2002).
Clearly, NO regulates many components of the Mf

network. However, it is not clear from the literature
whether regulation by NO and RNIs is inherently
stimulatory or inhibitory (e.g. Hattori et al., 2004).
Previous analysis by our group suggests that feedback
regulation of iNOS transcription by NO is primarily
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Fig. 2. Macrophage network schematic including interactions with an intracellular population of Mycobacterium tuberculosis with parameter names and

variable numbers depicted. Numbers in parentheses refer to the variable number of the component (e.g. (1) refers to x1, (11) refers to x11, etc.). Parameters

gij and hij quantify network interaction types (stimulation or inhibition of a process by a cellular component) and interactions with the bacterial

population. See Table A1 for parameter definitions and values. The model is analogous to a cell culture experiment, with these interactions averaged over a

large population of macrophages. The biochemical model (activation, killing and iron regulation) was previously analyzed without a representation of

bacteria in Ray and Kirschner (2006).
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negative, occurring via three pathways: NF-kB, Stat1, and
iron regulation. One effect of the proposed negative
feedback is optimization of several system properties when
compared to positive feedback in the same pathway (Ray
and Kirschner, 2006). Since the timing of Mf activation
reflects possible host activation strategies, the kinetic
effects of NO feedback may be important in Mtb infection.

The model we develop here expands our previous work
(Ray and Kirschner, 2006). In that model we assumed
general endotoxin (LPS) stimulation of the NF-kB path-
way. Here, we focus on Mtb-specific factors to study the
parameters that determine clearance versus persistence in
the interaction between macrophages and Mtb. To this
end, we introduce a dynamic intracellular population of
Mtb into the existing model (Fig. 2). The ability of Mfs to
kill Mtb via NO-mediated mechanisms may depend on
timing of TNF and IFN-g signaling. In addition to TNF
and IFN-g, Mtb-derived signals also contribute to Mf
activation. We assume this to occur due to ManLAM, a
complex glycolipid of Mtb, including the virulent H37Rv
strain (Brown and Taffet, 1995; Chan et al., 2001). Lack
of quantitative data for Mf responses to ManLAM
prompted dose–response experiments performed herein
for calibration of the model to Mf activation kinetics.

2. Materials and methods

2.1. Dose–response experiments

In the mathematical model, we assume that Mtb-derived
signals contribute to activation via ManLAM-mediated
NF-kB induction (Brown and Taffet, 1995; Chan et al.,
2001). In order to calibrate the Mf model response to
ManLAM of virulent Mtb strains and to establish a
cooperative NO response with IFN-g, we performed
dose–response experiments with the J774.16 Mf cell line
(ATCC; Figs. 2 and A1). Doses of 0, 0.01, 0.1, 1, 10, and
100 mg/ml ManLAM (Colorado State University, Fort
Collins, CO) were treated along with 0, 0.01, 0.1, 1, 10, and
100U/ml IFN-g (Sigma) in triplicate for 96 h in 96-well
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plates (Becton Dickinson) seeded with 1.5� 105Mfs/well.
At appropriate times we used the Griess reagent assay to
measure nitrite output as a proxy for NO production
(Chan et al., 1992).
2.2. A macrophage network model with mycobacterial

infection

We previously developed a mathematical model of the
Mf response to activation signals (IFN-g and the general
endotoxin LPS) inducing killing mechanisms (iNOS/NO in
the model) co-regulated with iron homeostasis apparatus
(Ray and Kirschner, 2006). This model did not include a
representation of infection. Here we introduce a population
of Mtb that interacts with the existing Mf model frame-
work to study how effectively this system kills Mtb under
different signaling conditions, with ManLAM/TNF repla-
cing LPS as the complementary signal to IFN-g.

We represent each component of the model as a
continuous entity in an ordinary differential equation.
It is useful to think of this model as being analogous
to an Mf cell culture system, with the results averaged
over a large population of Mfs. The model is built with a
non-dimensionalized form of the local and piecewise
S-system representations of the power law formalism
(Savageau, 1996; Savageau, 2002). Each of n molecular
components of the system is described by a differential
equation:

dxi

dt
¼ ai

Ynþm

j¼1

x
gij

j

2 6 4

vþ
i

� ai

Ynþm

j¼1

x
hij

j

2 6 4

v�
i

, (1)

where vþi and v�i are aggregate power law fluxes describing
the production and consumption of molecule xi that may
Fig. 3. (A) Cumulative nitrite output of J774.16 macrophages at 96 h after trea

response phases based on the dose of IFN-g, marked 1 and 2. (B) Simulated cum

trends. A version of the mathematical model without M. tuberculosis infection

The two asterisks denote dose levels excluded from the fitting (see footnote 1
be affected by any of m independent variables. Parameter ai

is a turnover rate, always positive, that sets the speed of
production and consumption. Parameters gij and hij are
kinetic orders (regulatory parameters) quantifying the
effect of the variable xj on the rate of xi production and
consumption, respectively. How a model component
(variable) regulates a given flux is determined by the
kinetic order: if gij40, xj has a stimulatory effect on the
flux vþi ; if gijo0 the effect is inhibitory; if gij ¼ 0 then xj

does not regulate vþi . Fig. 2 illustrates the biochemical
network with numerical indices for each variable and
important parameters. We present the complete set of
equations and parameter values in the Appendix. With
the model in non-dimensional form, we report [NO],
[LIP] and other molecular species as fold-induction
above the basal steady state: xj ¼ Xj/Xj,0 (where Xj is the
absolute concentration and Xj,0 is the quiescent steady state
level).
Some terms in the model (i.e. production rates of

NF-kB, Stat1 and iNOS mRNA) require a piecewise
representation due to a biphasic response in the data
(c.f. two response phases in Fig. 3), where we quantify the
effects of LAM and IFN-g on activation signaling over the
entire range of experimentally determined nitrite outputs.
In this case, the rate terms have the same mathematical
form but the parameters depend on which IFN-g dose
range is used (Fig. 3 shows the phases with model fit; Table
A2 gives parameter estimates of the fit).
2.3. Simulated M. tuberculosis infection

We represent Mtb infection as a single variable: an
intracellular bacterial population subject to the effects of
NO and iron levels in the Mf network. The equation
representing bacterial kinetics has growth and death rates
tment with a wide range of ManLAM and IFN-g doses. Note two distinct

ulative nitrite production at 96 h after treatment reproduces experimental

simulated the cell culture experiment. LOD: limit of detection for nitrite.

in the text).



ARTICLE IN PRESS

1Two of the dose combinations (1U/ml IFN-g with 10 or 100mg/ml

ManLAM) give model predictions lower than the experimental data.

These data appear to be anomalously high in comparison to nitrite output

at other doses (Figs. 2 and A1 starred), and we attribute the discrepancy to

experimental error.
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parameterized as power laws:

db

dt
¼

abbx
gbNO

6 x
gbLIP

7 1�
b

bmax

� �
� bbbxhbNO

6 ; x7XkbLIP;
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gbNO

6 1�
b
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� �
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6 ; x7okbLIP:

8>>><
>>>:

(2)

This representation is mathematically equivalent to a
piecewise generalized mass action representation of the
power law formalism (Savageau, 2001). The Mtb load is
sensitive to NO levels due to growth rate inhibition
(represented by the parameter gbNO) and enhancement of
the rate of death (represented by hbNO; Fig. 2). This model
phenomenologically captures several effects of NO/RNIs;
for example, gbNO captures a possible dormancy program
in Mtb induced by NO (Ohno et al., 2003; Voskuil et al.,
2004). The relative insensitivity of Mtb to superoxide and
other non-RNI killing mechanisms (Bryk et al., 2000; Ehrt
et al., 1997; Nathan and Shiloh, 2000; Ruan et al., 1999;
Springer et al., 2001) allows us to omit these effectors,
which are more important against other pathogens (Miller
and Britigan, 1997). The effect of elevated intracellular iron
(represented by gbLIP) is stimulatory, capturing the effects
of iron-gathering siderophores produced by Mtb (DeVoss
et al., 2000). This effect saturates when iron is no longer the
rate-limiting nutrient (Raghu et al., 1993) at a level given
by kbLIP.

The variables representing NO (x6) and the LIP (x7) are
scaled to accurately represent how these quantities affect
Mtb growth. For simplicity, mycobacteria are presumed to
grow best in the absence of NO and to be sensitive to
relatively small levels of it. Then x6 ¼ 1 (non-dimensional
[NO] at the quiescent steady state) is the threshold for
sensitivity of Mtb growth and death rates to NO. The LIP
concentration giving the fastest growth defines the LIP
saturation threshold, kbLIP. The parameter gbLIP scales the
effect of the iron pool (in the sub-saturation range) on the
rate of bacterial growth. The logistic term (1�b/bmax)
ensures that the population does not exceed a plausible
MOI, above a maximal population we set at 50 bacteria per
cell (Paul et al., 1996; Zhang et al., 1998).

Iron is removed from the cellular LIP at a rate
proportional to the number of bacteria. When bacterial
levels drop below detectable levels (set by kLIPb), this effect
is absent. Sensitivity of iron pool levels to bacterial number
is scaled by hLIPb. We expect this parameter to be small
(estimated at 0.05) to approximate the level of iron loss
from Mfs (approximately 30%; Olakanmi et al., 2002).
The resulting iron loss rate in the Mf network is

v�7 ¼

a7xh77
7 xh78

8 ðkLIPbbÞhLIPb ; b4
1

kLIPb

;

a7xh77
7 xh78

8 ; bp
1

kLIPb

:

8>><
>>:

(3)
2.4. Activation signals

We introduce exogenous concentrations of TNF and
IFN-g into the model as independent variables (x11 and
x12, respectively). Each independent variable is scaled by a
parameter d to interface with the non-dimensional network
model. Intracellular Mtb also contributes to Mf activa-
tion, assumed to be from stimulation by sloughed
ManLAM. Since it is derived from the intracellular Mtb
population, it is a function of the number of bacteria
present. s scales the Mtb population to capture the effect of
ManLAM for compatibility with the Mf model. The
resulting terms for production of active NF-kB (vþ1 ) and
Stat1 (vþ2 ), which go into equations for x1 and x2, are

v�1 ¼ a1ðsbÞgkb ðdTNF x11Þ
g111x

g16
6 ;

vþ2 ¼ a2ðdIFN-gx12Þ
g212x

g26
6 :

(4)
2.5. Parameter estimation

Specific choices of parameter values give the system
quantitative characteristics and are required to solve the
system on a computer (Table A1). To calibrate the model
and estimate unknown parameters, we modified the Mf
network model (without Mtb) to include a variable
representing nitrite accumulation from NO production, a
modification to capture experiments performed herein. We
also account for degradation of ManLAM and IFN-g in
cell culture. This allowed us to directly fit simulated nitrite
dynamics to our dose–response experiments (Fig. A1). We
account for the biphasic response in the model using a
piecewise function for Stat1 and NF-kB activation rate
laws (described above). The fitted parameters (listed in
Table A2) were assigned an initial value based on previous
work (Ray and Kirschner, 2006) and systematically
adjusted by hand to achieve the fit1 (Fig. 3).

2.6. Simulated infection and treatment protocols

Simulations employed a protocol where Mfs were
treated with constant concentrations of TNF and/or
IFN-g as described in the three scenarios with infection
of 1.5� 105 bacteria at t ¼ 0 h (i.e. MOI ¼ 1, or one
bacillus per Mf, in analogy to a cell culture system; Fig. 1).
As a reference threshold of activation, TNF concentrations
of 22 ng/ml and IFN-g concentrations of 1U/ml were
simulated. We increased IFN-g to 100U/ml and/or TNF to
220 ng/ml in some simulations to determine the effects of
variable cytokine doses. The concentrations of IFN-g were
chosen to represent a range from Phase 2 of the
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dose–response studies (Fig. 3), where activation levels are
likely bactericidal. TNF concentrations are known to be in
the ng/ml range in tuberculosis patients (Grebenchtchikov
et al., 2005). We chose the reference TNF dose to represent
a high level of activation without dominating the response
to IFN-g.

For scenarios with TNF and/or IFN-g stimuli preceding
infection (c.f. Fig. 1), the Mf system was brought to steady
state before infection. We use the intracellular population
of Mtb at t ¼ 100 h post-infection as a measure of the
effectiveness of Mfs at killing Mtb (i.e. the infection

outcome). This time frame is similar to longer co-culture
experiments here and elsewhere (Bonecini-Almeida et al.,
1998; Sato et al., 1998).

2.7. Numerical simulations

After deriving the model, we solved the non-linear
ordinary differential equation S-system to obtain temporal
dynamics for each element of the model. We used
Mathematica (Wolfram Research) for most calculations,
including an algorithm for uncertainty and sensitivity
analysis and mathematically controlled comparisons (both
described below). Results derived with these algorithms
were confirmed with a second differential equation solver
in C++ implementing Runga-Kutta adaptive step-size
solvers and appropriate finite difference methods.
A Systems Biology Markup Language file of the model is
available on the authors’ website (http://malthus.micro.
med.umich.edu/lab/sbml.html).

2.8. Uncertainty and sensitivity analysis

Parameters measured from experimental studies likely
vary by experiment due to intrinsic errors of measurement
and differences in experimental protocol. To explore the
effects of uncertainty in the model, we evaluated it with a
range of specific parameter values using Latin hypercube

sampling (McKay et al., 1979). For this scheme, each
parameter range was divided into 1000 equiprobable
subintervals of a uniform distribution, randomly combined
from each parameter to give 1000 parameter sets. Para-
meters g111, g212, bTNF and bIFN-g were held constant during
this analysis to preserve relative levels of activation of Stat1
and NF-kB pathways. Computing the numerical solution
to these 1000 specific cases gives a statistical description of
each model component at any time point, here using Mtb
population at t ¼ 100 h post-infection as the outcome
measure. We determine statistical sensitivity by computing
partial rank correlations (PRCs) between the outcome Mtb
population and each varied parameter (Blower and
Dowlatabadi, 1994). These correlations vary between �1
and 1, with a significance test approximating a Student’s t

(Blower and Dowlatabadi, 1994) to determine if the PRC is
significantly different from zero. Each sampled parameter
has its own correlation that we interpret to represent
the sensitivity of the Mtb population to that parameter.
A separate Z test (Howell, 1987) compares the relative
correlations between different parameters and between the
same parameter examined under different experimental
conditions. To account for the large number of varied
parameters we corrected significance levels using the
Bonferroni method (Shaffer, 1995).

2.9. Macrophage network characteristics and effective

reduction of Mtb numbers

We previously used mathematically controlled compar-

isons (Irvine, 1991) to predict the type of regulation (i.e.
positive or negative) between important Mf network
interactions (represented by the boldfaced regulatory
parameters in Table A1; see Fig. 2). These are based on
evolutionary pressures represented by criteria for func-
tional effectiveness (described below). This approach has
been applied before with statistical techniques to study
S-system behavior (Alves and Savageau, 2000; Schwacke
and Voit, 2004).
With this method we compare the effect of positive

regulation (+) versus no regulation (0) versus negative
regulation (�) for each interaction in the Mf model to
meet criteria for how the system best operates. It also
allows comparisons for quantitative changes in each
interaction constrained to one type of regulation (i.e. +/
0/�). We previously analyzed the model without Mtb (Ray
and Kirschner, 2006) using three criteria established for
other inducible genetic circuits (Hlavacek and Savageau,
1995): stability, robustness and responsiveness. Stability
refers to the ability of a system to return to steady state
after a small change in component levels. Robustness
means a relative insensitivity of model variables and
production/consumption rates to perturbations in para-
meters and other external components. Finally, respon-
siveness in this case represents a fast temporal change in
NO levels after activation signals, reaching an activated
steady state as quickly as possible after induction.
For this study we define response time as the time for NO

concentrations to reach half way to the activated steady
state level (approximated by the level of NO 100 h post-
infection). This definition captures the speed of response
without penalizing for overshoot (of NO).
Mathematically controlled comparisons require internal

and external equivalence of the system across changes in
the parameter of interest (Schwacke and Voit (2004)
discuss these equivalence requirements in more detail).
Internal equivalence is ensured by requiring that all terms
in the mathematical model that are not involved in the
interaction under study must have identical values. Meet-
ing external equivalence requires correction of parameters
in the rate term (V) containing the parameter of interest (p)
as p is altered to ensure some equivalent external behavior
of the system. To meet this requirement, the gain of iNOS
from changes in TNF, IFN-g and exogenous iron are held
constant as the strength of the interaction changes. That is,
the sum Ls ¼ L(X4,X11)+L(X4,X12)+L(X4,X17) must be

http://malthus.micro.med.umich.edu/lab/sbml.html
http://malthus.micro.med.umich.edu/lab/sbml.html
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Fig. 4. Greater survival of M. tuberculosis in macrophages with negative

feedback to NF-kB by NO compared to positive feedback. The feedback

parameter (g16) was changed between negative (�0.75) and positive (0.75)

using mathematically controlled comparisons. M. tuberculosis numbers

represent the population of Mtb in 1.5� 105 Mfs at 100 h post-infection.

Control: no cell-mediated immunity. In Scenario 1, TNF and IFN-g
signaling precedes infection. Scenario 2 represents targeted secretion of

IFN-g at the time of infection with TNF stimulation preceding. Scenario 3

represents TNF and IFN-g signaling both concurrent with infection. See

Fig. 1 for details of the scenarios.
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constant, where LðX i;X jÞ ¼ q ln X̂ i=q ln X̂ j (the mathema-
tical definition of gain in this type of system, which may be
positive or negative; X̂ i denotes a quiescent or activated
steady state level of Xi). For each interaction, we deduce a
constrained, two-dimensional parameter space (Ray and
Kirschner, 2006) with the interaction parameter under
study and one other parameter in the same rate term V

corrected for external equivalence. There is a line of
equivalent gain in this parameter space found from Ls

along which the parameters are varied for the comparison.
We now extend the analysis described above to include

one further functional criterion, bacterial control: optimiz-
ing the reduction or killing of Mtb. We calculated bacterial
load in the system at t ¼ 100 h after infection for two kinds
of changes in the parameters of interest. In some cases, we
changed the interaction type (�/0/+) while for others we
changed the intensity of regulation for a specific interaction
type. The type or level of regulation for each interaction
that resulted in the lowest bacterial numbers represents the
parameter value that optimally leads to a reduction in
bacterial loads for that parameter.

3. Results

While macrophages are capable of effectively killing
most pathogens, Mtb preferentially survives within them
under certain conditions. Our goal is to determine why
Mfs are poor at killing Mtb, and to predict conditions that
optimize killing/reducing Mtb levels. Here we use a
mathematical model to determine the effects of timing of
the activation signals TNF and IFN-g in achieving this
goal.

3.1. Macrophage network characteristics that prevent

effective Mtb killing

While negative regulation by NO optimizes stability,
robustness and responsiveness of the Mf network, it does
so by down-regulating iNOS transcription (Ray and
Kirschner, 2006). To determine the effects of negative
feedback on Mtb killing, we computed the predicted
infection outcome (Mtb numbers 100 h post-infection)
under different feedback conditions. Parameters represent-
ing regulation of NF-kB, Stat1 and iron regulatory
apparatus were varied between positive, negative and lack
of feedback using mathematically controlled comparisons.
We then simulated each scenario (Fig. 1) at the reference
cytokine dosage (22 ng/ml TNF and 1U/ml IFN-g) for
each type of regulation. We also performed this analysis for
transcriptional signals to confirm that this method gives
results in agreement with known types of iNOS regulation.
We present one interaction in detail (NO feedback to NF-
kB: g16; Fig. 4) to show our methodology and summarize
the other results in Table 1.

Table 1 shows that the predicted type of regulation that
minimizes Mtb numbers for NO feedback to NF-kB is
positive, which suggests that positive feedback optimizes
Mtb killing. This is also true for another case regarding NO
regulation of iron regulatory apparatus (parameter h96),
while NO feedback to Stat1 (g26) is neutral to infection
outcome (Table 1). These results contradict our previous
predictions that negative feedback is optimal in each case
for the other criteria for Mf function in the uninfected
form of the model (c.f. Table 1 and Ray and Kirschner,
2006). Therefore, the type of regulation by NO in the Mf
network that optimizes other functional criteria does not
improve bacterial control (Mtb killing) in comparison to
other types of regulation, and in some cases is antagonistic
toward killing. We now show how the timing of activation
signals, relative to when infection occurs, can compensate
for this effect.

3.2. Activation signals concurrent with infection counteract

the antagonistic effects of negative feedback

While the previous results suggest that negative feedback
regulation by NO in Mfs reduces the effectiveness of
killing, the sensitivity of Mtb to this effect may depend on
the timing of activation signals. Since feedback likely
affects kinetics of activation, we hypothesized that the
timing of activation signals may benefit from the kinetic
advantages of negative feedback. To test this, we
performed sensitivity analysis that correlates the number
of Mtb 100 h post-infection (the infection outcome) with
changes in the strength of each parameter in the model,
preserving the qualitative type of regulation (+ or �) for
all parameters. The resulting correlations indicate the
sensitivity of Mtb to each varied interaction (see Section
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Table 1

Macrophage regulatory interactions optimizing killing of M. tuberculosis and temporal responsiveness

Transcriptional regulation of iNOS by Nitric oxide feedback to

NF-kB (g31) Stat1 (g32) LIPa (g37) NF-kB (g16) Stat1 (g26) IRPb (h96)

Optimal killingc + + � + Ed +

Optimal response timee + + � � � �

aRegulation occurs indirectly via C/EBP-b in vivo.
bIRP: iron response protein. See Fig. 2.
cIn all scenarios with cell-mediated immunity.
dAll Mtb numbers within 5% for positive (+), null (0) and negative (�) feedback.
eOther criteria for macrophage function also conform to this result (Ray and Kirschner, 2006).

Table 2

Sensitivity of M. tuberculosis numbers (100 h post-infection) to quantita-

tive variations in regulatory interactions

Partial rank

correlations with

Mtb no.

NO regulation of:a

NF-kB Stat1 IRPb

Control –0.214
–0.236

*
*

*
NS
NS

–0.146
–0.300
–0.134

NS

*
*

*

NS

*
*

*

–0.330
–0.347
–0.154

Scenario 1

Scenario 2

Scenario 3

*po0.01. The far right bracket for each parameter denotes significant

differences between Control and each numbered scenario. The remaining

two brackets denote significant changes between the three numbered

scenarios. NS: not significantly different from zero (p40.01).
aDue to negative regulation by these interactions, correlations with

negative signs are interpreted to mean that stronger negative regulation

reduces the effectiveness of M. tuberculosis killing.
bIRP: iron response protein. See Fig. 2.
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2.8 for details). We calculated these correlations separately
for each activation scenario (Fig. 1).

The total number of parameters that significantly
correlate with the infection outcome is reduced from nine
for Scenario 1 (i.e. TNF and IFN-g introduction preceding
infection; the significant parameters are bb, g16, g26, g31, g32,
g37, h96, h97 and hbNO as defined in Table A1) to six of these
nine for Scenario 2 (i.e. TNF introduction preceding
infection; the significant parameters are bb, g26, g31, g32,
h96, and hbNO) and four of the nine for Scenario 3 (i.e. TNF
and IFN-g introduction concurrent with infection; the
significant parameters are bb, g31, g32, and hbNO). Since the
only difference between these scenarios is the timing of
TNF and IFN-g, competing effects may ‘cancel out’ the
sensitivity of some parameters in Scenario 2 and 3 due to
activation kinetics. To test this, we examined the effect of
each scenario on sensitivities to NO feedback parameters.

Table 2 shows statistical sensitivities of Mtb infection
outcome to each NO feedback parameter. Each non-zero
sensitivity is negative. Since the parameters are negative
(representing negative feedback), a negative sensitivity here
represents an effect that reduces the effectiveness of Mtb
killing. Each of the sensitivities is significantly smaller than
0 in Scenario 1. Scenario 2 shows a reduced effect for two
of the parameters (feedback to Stat1 and IRP; po0.01 in a
Z test versus Scenario 1 sensitivities) and no sensitivity to
feedback to NF-kB. In Scenario 3, none of the three
sensitivities is significantly different from 0. These changes
in sensitivity between the three scenarios suggest that the
timing of activation signals has an effect on the role of NO
regulatory effects in Mtb killing, where activation con-
current with infection relaxes the undermining effects of
these signals.

3.3. Dynamics that benefit cytokine signals concurrent with

infection

While negative feedback speeds response times in all the
tested scenarios, NO production by Mfs is initially lower
in Scenarios 2 and 3 as compared to Scenario 1. Therefore,
the effects of NO in the Mf system do not consistently
favor Mtb killing. This may create a dependency on fast
response times that favors strong negative feedback. We
hypothesized that the dynamics of Mf activation in
the initial hours post-infection may neutralize the effects
of negative feedback that reduces the effectiveness of Mtb
killing.
To test this hypothesis, we investigate the effects of the

parameter representing NO feedback to NF-kB (g16) using
mathematically controlled comparisons. For brevity, we
explore only this parameter, but the effects hold qualita-
tively for NO feedback to Stat1 (g26) and iron regulation
(h96) as well. To determine the specific effect of feedback to
NF-kB in each scenario, we varied g16 using mathemati-
cally controlled comparisons as described in Section 2
(Fig. 5). As the feedback becomes more strongly negative
(i.e. g16 from �0.5 to �2.0), the response time of NO levels
(measured here as the time, in hours, required to reach half
[NO] at t ¼ 100) is unchanged for the scenario with no
exogenous cytokine signals (Control). Scenario 1 improves
on this response time only for very strong negative
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Fig. 5. Stronger negative feedback improves macrophage activation time

during infection with M. tuberculosis. Graphs depict the first 30 h post-

infection to show initial kinetics. The level of negative feedback to NF-kB
by nitric oxide (represented in the model by parameter g16) was varied

using mathematically controlled comparisons. (A) TNF and IFN-g signals
preceding infection (Scenario 1). (B) Targeted secretion of IFN-g
restricting it to the site of infection (Scenario 2). (C) Initial cytokine

stimulus concurrent with infection time (Scenario 3). We found the control

scenario (without cell-mediated immunity; dashed line in A, B and C) to

be constant over variations in the level of feedback; we therefore use it as a

reference point between scenarios. Rectangles depict the response time

(number of hours for nitric oxide concentration to reach half the level at

100 h post-infection) for each case. Nitric oxide levels are normalized in

each scenario by the level at 100 h post-infection. See Fig. 1 for Scenarios.
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feedback (Fig. 5A), while response times readily improve
for Scenarios 2 and 3 (Fig. 5B and C, respectively).2 This
result suggests that strong negative feedback preferentially
benefits Mf activation in scenarios with delayed activation
signals (Scenario 3).
3.4. Strong negative feedback improves relative bacterial

killing with activation concurrent with Mtb infection

compared to other scenarios

Due to the combination of costs and benefits of negative
feedback, we hypothesized that higher cytokine concentra-
tions received concurrent with infection can compensate
for antagonistic effects of feedback on Mtb killing by Mfs.
To test this hypothesis, we examined Mtb numbers at

100 h post-infection for each activation scenario as we
varied levels of feedback to NF-kB using mathematically
controlled comparisons (Fig. 6). This was done at two
simulated cytokine concentrations, representative of the
reference dose used throughout (1U/ml IFN-g and 22 ng/
ml TNF; Fig. 6A) and a case with IFN-g concentration
elevated to 100U/ml (Fig. 6B). We repeated this analysis
for elevated TNF concentrations with each IFN-g con-
centration with similar results (not shown).
For a given level of feedback, Mtb killing is nearly

identical between all three activation scenarios at the lower
cytokine dose (Fig. 6A). For elevated IFN-g dosing and
strongly negative feedback (Fig. 6B), IFN-g concurrent
with infection (Scenario 2) shows somewhat enhanced
killing over IFN-g preceding infection (Scenario 1).
Scenario 3 shows a much larger improvement in killing,
with higher levels of negative feedback becoming beneficial
to killing beyond a certain level (Fig. 6B). This coincides
with high levels of NO overshoot beyond the activated
steady state level for this activation scenario (e.g. Fig. 5C),
suggesting a mechanism for this effect.
Therefore, in scenarios with cytokine signaling that is

timed to coincide with infection, Mfs perform at least as
well at Mtb killing as scenarios with signaling preceding
infection at equal concentrations. High cytokine doses can
improve killing in Scenarios 2 and 3 under strong negative
feedback, with sufficient overshoot of NO reversing the
antagonistic effects of NO on Mtb killing.
4. Discussion

Mfs require complementary activation signals (TNF or
bacterial antigens and IFN-g) to achieve a bactericidal
state during infection with Mtb. Different sources for TNF
(produced by Mfs and T cells) and IFN-g (which undergoes
targeted secretion by T cells) may reflect a host strategy to
prevent superfluous perturbation of surrounding tissues.
2We also found response times to be improved for stronger negative

feedback in parameter sets not exhibiting the overshoot effect seen in

Fig. 5 (not shown).
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Fig. 6. High cytokine concentrations that do not precede infection

enhance killing under strong negative feedback. (A) Level of Mtb killing

for three macrophage activation scenarios with cytokine concentrations of

22 ng/ml TNF and 1U/ml IFN-g. (B) Mtb killing for three activation

scenarios with 22 ng/ml TNF and 100U/ml IFN-g. Scenario 1: TNF and

IFN-g signaling precedes infection. Scenario 2: targeted secretion of IFN-g
at the time of infection with TNF stimulation preceding. Scenario 3: TNF

and IFN-g signaling both concurrent with infection. See Fig. 1 for details

of the scenarios.
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However, the timing of these activation signals may affect
the outcome of Mtb infection.

We simplified a range of possible activation kinetics into
three scenarios based on timing of TNF and IFN-g signals
that Mfs receive relative to when they become infected (i.e.
take up Mtb; Fig. 1). The effects of these scenarios were
tested with a mathematical model representing important
Mf activities known to interact with intracellular Mtb in
mouse models (Fig. 2). This model was calibrated to
extensive dose–response experiments (Figs. 3 and A1) to
establish a reasonable kinetic response for production of
NO, a major anti-mycobacterial effector molecule.

To prevent excessive activation while still allowing high
NO levels when necessary, the Mf network must balance a
quiescent state with the rare need to reach high levels of
activation. To this end a series of negative feedback loops
modulate NO production (Fig. 2). However, one possible
effect of negative feedback is that effective Mtb killing by
Mfs is reduced when compared to positive feedback
(Table 1 and Fig. 4).
The mathematical model predicts a reduced effect of

negative feedback by NO in scenarios where TNF and/or
IFN-g signals are introduced concurrent with Mtb infec-
tion (Table 2). Strengthening the feedback (i.e. making NO
regulation of NF-kB more negative by making the
parameter g16 more negative) also speeds Mf responses
after infection in scenarios where receipt of TNF and/or
IFN-g signals coincides with infection (Fig. 5). This
suggests the importance of improved response times
allowed by negative feedback in Scenarios 2 and 3.
This result depends on the interpretation of response

times as rise times of NO, which permits the system to be
capable of high overshoots that may be detrimental to
overall system function. Our previous results suggest that
this system allows high NO production if the appropriate
signals are present (Ray and Kirschner, 2006). Based on this
activation model, we suggest that overproduction of NO is
acceptable in circumstances with multiple activation signals.
We also find a possible advantage of this overshoot.

Under conditions of strengthened feedback to NF-kB (i.e.
parameter g16o�1.25), the model predicts enhanced killing
of Mtb by Mfs at high cytokine concentrations for
Scenarios 2 and 3 compared to Scenario 1. This effect is
particularly apparent for Scenario 3, where TNF and IFN-g
signals occur concurrent with infection of Mfs (Fig. 6), and
coincides with the predicted overshoot of NO production.
This indicates an advantage of the initial burst of NO levels
permitted by negative feedback after infection.
During the course of pulmonary infection with Mtb,

multiple signals from cell-mediated adaptive immunity
induce migration of Mfs along with T cells to the lung
leading to the formation of immune structures called
granulomas (e.g. Algood et al., 2003). Mfs that have
ingested Mtb at the site of infection can present antigen to
T cells, which, upon activation constitute a rich source of
TNF and IFN-g (reviewed in Flynn and Chan, 2001). The
most frequent clinical outcome of pulmonary Mtb infec-
tion is a latent infection that represents a stable co-
existence of host and pathogen. We have emphasized the
functional consequences of host Mf activation strategies
from the perspective of optimizing Mtb killing, but our
results also suggest a mechanism for establishing latent
infections. The most effective host activation strategy
may be recruitment of Mfs directly into the granuloma
(with cytokine signaling as in Scenario 3 in Fig. 1), and
prevention of this strategy may favor Mtb growth (for
instance, via loss of vascular points of Mf entry in regions
of Mtb-induced necrosis). An ongoing immune response at
the periphery of a granuloma prevents bacterial dissemina-
tion in most cases. However, Mfs migrating to the site of
infection from flanking lung tissues (possibly encountering
cytokines as in Scenarios 1 and 2 in Fig. 1) are more likely
to permit some Mtb growth, thus striking a balance
favorable to a latent infection state (Fig. 7).
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Fig. A1. Simulations and experimental data shown as time series over 96 h. Th

time frame. Dashed lines represent simulated nitrite output for various LAM d

two dotted lines represent dose levels excluded from the fitting (see footnote 1

Fig. 7. Recruitment scenarios that tip the balance between bacterial

killing and persistence based on timing of activation signals. (A)

Recruitment of blood monocytes (that become macrophages) directly to

a granuloma from localized vascular sources may favor effective bacterial

killing. (B) Recruitment of macrophages from surrounding lung tissue

may result in some level of activation preceding infection, favoring latent

infection.
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A role for the timing of events from Mf activation has
been proposed to tip the balance between host-pathogen
interactions in different contexts (e.g. Shaughnessy and
Swanson, 2007). In the case of Mtb infection, our model
suggests that late activation is an optimal pathogen killing
strategy. Experimental Mtb infection of Mfs with cytokine
signals timed as in each of the scenarios here can test our
predictions. These results also call for the integration of
theoretical and experimental approaches to understand the
temporal and spatial roles of signaling and macrophage
migration in Mtb granuloma formation.
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Appendix

Complete specification of the mathematical model. The
definition of each variable and parameter can be found in
Section 2, Figs. 2 and A1, and Tables A1 and A2. Fig. 2
and Tables A1–A2. The effects of some precursors (e.g.
amino acids) are omitted for clarity.
Table A1

Definitions and estimates of model parameters. Boldfaced parameters are the

Effect Parameter Estimated value

NF-kB turnover a1 2.4 h�1

Stat1 turnover a2 2.77 h�1

iNOS mRNA turnover a3 0.173 h�1

INOS turnover a4 0.0693h�1

NHA turnover a5 5.545mmol/h

NO turnover a6 2.773 h�1

LIP turnover a7 32.201mmol/h

Ferritin turnover a8 40.0mmol/h

IRP turnover a9 35.0mmol�1 h�1

NF-kB regulation by TNF g111 1.18

TNF conc. scaling dTNF 117.4

Stat1 regulation by IFN-g g212 cf. Table A2

IFN-g conc. scaling dIFN-g 20

NF-jB txn regulation g31 cf. Table A2

Stat1 txn regulation g32 0.26

LIP txn regulation g37 �0.177

NO feedback to NF-jB g16 cf. Table A2

NO feedback to Stat1 g26 �0.5

Translation g43 1

Arg-NHA regulation g54 1

NHA-NO regulation h54 1

Regulation of iron influx g79 0.5

LIP sequestration h78 0.74

IRP regulation of ferritin g89 �0.645

LIP-ferritin h87 1

NO regulation of IRP h96 �0.5

LIP regulation of IRP h97 0.5

Mtb growth rate ab 0.0250Mtb/h

NO regulation of Mtb growth gbNO �0.5

Iron enhancement of Mtb growth gbLIP 1

Iron effect saturation kbLIP 1

Intrinsic Mtb death rate bb 2.5� 10�4Mtb/h

Killing by NO hbNO 0.75

NF-kB regulation by LAM gkB 0.2

Sloughed LAM s 120Mtb�1

Scaling of Mtb on LIP kLIPb 106Mtb�1

Effect of Mtb on LIP hLIPb 0.05

Maximum Mtb per Mf bmax 50Mtb/Mf

aLHS: Latin hypercube sampling.
bCalibrated to achieve approximately 50% killing at the default cytokine do
A.1. Mathematical Model of Macrophage Network

dx1

dt
¼ a1½ðsbÞgkBðdTNF x11Þ

g111x
g16
6 � x1�,

dx2

dt
¼ a2½ðdIFN-gx12Þ

g212x
g26
6 � x2�,

dx3

dt
¼ a3½x

g31
1 x

g32
2 x

g37
3 � x3�,

dx4

dt
¼ a4½x

g43
3 � x4�,
focus of the analysis

LHS rangea References

[0.01, 50] Hoffmann et al. (2002)

[0.01, 50] Haspel et al. (1996)

[0.116, 0.347] Ray and Kirschner (2006)

[0.0365, 0.693] Ray and Kirschner (2006)

[5.454, 332.711] Ray and Kirschner (2006)

[2.727, 166.355] Ray and Kirschner (2006)

[2.565, 61.820] Ray and Kirschner (2006)

[4, 89] Ray and Kirschner (2006)

[29.17, 44.06] Ray and Kirschner (2006)

Not varied Harant et al. (1996)

Not varied Harant et al. (1996)

Not varied cf. Table A2

Not varied cf. Table A2

[0.1, 1.5] cf. Table A2

[0.1, 1] cf. Table A2

[�0.1, �2] Ray and Kirschner (2006)

[�0.3, �1.5] Hattori et al. (2004); cf. Table A2

[�0.3, �1.5] Ray and Kirschner (2006)

Not varied Ray and Kirschner (2006)

Not varied Ray and Kirschner (2006)

Not varied Ray and Kirschner (2006)

[0.1, 1.5] Ray and Kirschner (2006)

Not varied Kakhlon et al. (2001)

[�0.1, �2] Ray and Kirschner (2006)

Not varied Ray and Kirschner (2006)

[�0.1, �1] Ray and Kirschner (2006)

[0.4, 2] Ray and Kirschner (2006)

[0.0191, 0.0385] Average of Graham and

Clark-Curtiss (1999),

Manca et al. (1999),

Silver et al. (1998),

Zhang et al. (1998)

[�0.3, �1.5] Initial guess

[0.3, 1.0] Initial guess

[0.1, 2] Initial guess

[2.5� 10�5, 2.5� 10�4] 1% of ab

[0.1, 2] Initial guessb

Not varied cf. Table A2

[10, 10000] Nigou et al. (2000)

Not varied Initial guess

[0.1, 0.001] Initial guess

Not varied Guess from Paul et al. (1996);

Zhang et al. (1998)

se for default parameter values.
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Table A2

Parameter estimates from dose–response experiments

Phase IFN-g dose (U/ml) NF-kB activation by

LAM (gkB)

Stat1 activation by

IFN-g (g212)

INOS activation by

NF-kB (g31)

iNOS activation by

Stat1 (g32)

NO feedback to

NF-kB (g16)

A p0.1 0.2 1.0 1.46 0.26 �0.672

B 40.1 0.2 2.5 0.5 0.26 �1.5

Phase IFN-g dose (U/ml) LAM half-life in culture

(kLAM)a
IFN-g half-life in culture

(kIFN-g)
a

Scaling constant for LAM

(dLAM)a
Scaling constant for

IFN-g (dIFN-g)

A p0.1 0.025 0.035 500 20

B 41 0.025 0.035 500 20

aParameter required to accurately fit the model to the data, but not needed for simulations in the main text.
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dx5

dt
¼ a5½x

g54
3 � xh54

4 x5�,

dx6

dt
¼ a6½x

h54
4 x5 � x6�,

dx7

dt
¼ a7x

g717
17 x

g79
9 �

a7x7x
h78
8 ðkLIPbbÞhLIPb ; b4

1

kLIPb

;

a7x7x
h78
8 ; bp

1

kLIPb

;

8>><
>>:

dx8

dt
¼ a8½x

g89
9 � x7x8�,

dx9

dt
¼ a9½1� xh96

6 xh97
7 x9�,

db

dt
¼

abbx
gbNO

6 x
gbLIP

7 1�
b

bmax

� �
� bbbxhbNO

6 ; x7XkbLIP;

abbx
gbNO

6 1�
b

bmax

� �
� bbbxhbNO

6 ; x7okbLIP:

8>>><
>>>:
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