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ABSTRACT

As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These

positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of

positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also

can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies:

For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results

from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/

GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from

which column-specific properties such as sequence entropy and random noise were subtracted; “central” positions were

identified by calculating various network centrality scores. When compared among algorithms, network centrality methods,

particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions

with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the

top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central

positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolution-

ary pattern of constraints—detectable by divergent algorithms—that occur at key protein locations. Finally, we discuss the

fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.
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INTRODUCTION

On-going genomic sequencing has generated a huge

number of protein sequences. To place them into biolog-

ical context, sequences are usually grouped into protein

families that, in turn, can be used to reveal sequence/

structure/function relationships. A common approach is

to identify which amino acid positions are constrained

during evolution. These positions are presumably crucial

for the protein’s structure or function, and their muta-

tion can provide key insights to a protein’s function. Var-

ious algorithms have been devised to detect positions

that are conserved across a protein family or that vary

among alternative lineages.1–13 In addition, constraints

on corresponding pairs of positions can be detected

using coevolution analyses.

Coevolutionary algorithms seek to identify pairs of

positions that vary together across evolutionary time. For

example, if an amino acid change at position X correlates

with a change at position Y, positions X and Y are said

to coevolve. Coevolution suggests that the two positions
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are linked to carry out important structural or functional

roles. Such patterns can arise from short-range biophysi-

cal constraints (such as charge–charge interactions) but

are also commonly observed between positions that are

distant from each other on the protein structure, via

mechanisms that are not yet fully understood.14–16

Several algorithms, with a range of mathematical founda-

tions, have been devised to quantify coevolutionary patterns

in multiple sequence alignments (MSAs).17–27 These algo-

rithms determine pairwise scores for all possible combina-

tions of amino acid positions; the top pairwise scores

indicate the strongest pattern of covariation. Despite search-

ing for a common pattern, results from alternative algo-

rithms seldom identify the same top pairwise scores.23,28,29

One explanation is that some algorithms have flawed predic-

tions. On the other hand, alternative algorithms might detect

distinct evolutionary signatures, each biologically important.

To date, mutagenesis experiments have not identified any

single algorithm as better than the others for identifying

positions with coevolutionary, mutational constraints.†

We hypothesized that deep patterns in coevolutionary

data might be robust to algorithmic details and therefore

detectable by multiple algorithms. To that end, we

treated unthresholded coevolutionary scores as weighted

networks (complete graphs) and used network centrality

measures to identify important nodes. This allowed us to

determine whether central nodes (positions) were more

robustly identified by network analysis than by specific

edges connecting a pair of positions.

To identify the central positions, we used the pairwise

coevolutionary scores as edges of a weighted complete graph

to calculate two network centrality scores: degree centrality30

(DC) and eigenvector centrality31 (EVC). For each amino

acid position (node), DC simply takes the sum of connecting

edge weights, whereas EVC takes into account both the weight

of its connecting edges and the centrality of its connected part-

ners. In practice, we found little difference between these met-

rics; since EVC has an established history in other coevolution

studies, we focused downstream analyses on these results.

Centrality scores can be rank-ordered to reveal the most

central positions of the coevolution network. In analyzing

these scores, we first considered whether the central nodes

(i) were identical to positions with the highest pairwise

scores, or (ii) arose from multiple, intermediate scores (Fig.

1), corresponding to multiple coevolutionary constraints

from other amino acid positions. Indeed, for the protein

families of this study, positions with high EVC scores were

frequently distinct from positions with the highest pairwise

coevolutionary scores. Furthermore, when results were

compared among five alternative coevolutionary algo-

rithms, the EVC positions showed better agreement than

the top pairwise positions. Comparison with experimental

results showed that positions with high EVC scores have

key structural and functional roles in the LacI/GalR and

aldolase protein families. Thus, EVC calculations detected a

robust evolutionary pattern of amino acid changes at key

protein locations and can be used to guide experimental

studies of protein function. Finally, we discuss the existence

and interplay of multiple patterns in evolutionary data

that, together, give rise to emergent protein functions.

MATERIALS AND METHODS

Protein families, sequence alignments, and
MARS software

The MSA for the LacI/GalR family was constructed in

201132 and further refined in 2013.28 This MSA

Figure 1
Network representation of coevolutionary scores for the LacI/GalR fam-

ily. Note that these networks depict coevolutionary scores, not structural
contacts. (A) In this example, the ZNMI algorithm was used to calcu-

late pairwise coevolution scores. High scores are represented as thick

edges; weak scores are represented with thin edges. Each node corre-
sponds to an MSA column (amino acid position); node sizes and colors

are scaled according to EVC scores (large, black 5 high, small, white-
5 low). For figure clarity, only the top �4% of edges are shown; how-

ever, all edge weights (coevolution scores) were used for EVC
calculations. From the network shown in A, individual nodes and their

edges are highlighted in panels (B) and (C), to illustrate the difference

between a top EVC position with many moderate scores (B) and a posi-
tion with a high, pairwise coevolution score but a low EVC score (C).

†Some coevolutionary algorithms and methods for constructing MSAs do appear

to out-perform others in predicting direct structural contacts. However, as we

noted above, this is not the sole determinant of algorithm success; long range

coevolution can also be biologically significant.
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contains 351 representative sequences from 34 ortholog

groups; the full sequence set (>2000 sequences) is too

large for many calculations. Sequences for the aldolase

MSA were obtained by iterative rounds of PSI-BLAST,33

and manually edited to remove redundant sequences. To

take advantage of available sequence and structural data,

a representative subset was aligned using PRO-

MALS3D.34 The remaining sequences were clustered

based on their sequence identity into groups containing

at least one of the “representative” sequences in the

PROMALS3D alignment. These high sequence identity

clusters were re-aligned with MUSCLE.35 Group align-

ments were integrated into the full aldolase alignment

with the custom software MARS-Prot (Supporting Infor-

mation, Supplementary Methods) using the representa-

tive sequences as guides.

The MARS-Prot software is a general tool for integrat-

ing new sequences into existing sequence alignments that

does not perturb the labor-intensive editing that is

required to produce high quality MSAs. This tool is greatly

needed: extensive ongoing genomic sequencing requires

frequent updates to existing MSAs. The MARS-Prot algo-

rithm is described in Supporting Information, Supplemen-

tary Methods; references cited therein are cited here.36,37

MARS-Prot is freely available under an open source license

(https://github.com/djparente/MARS).

The LacI/GalR and aldolase protein alignments used in this

study are available upon request. As a final check, we consid-

ered the number of sequences and phylogenetic sampling in

these MSAs, which has been shown to affect MSA analy-

ses.38,39 For example, coevolution analyses might return

biased results if one lineage of the family were oversampled.

To check for this possibility, the sequence identity matrix for

each MSA was manually inspected to ensure that no group of

highly similar sequences was over-represented relative to the

rest of the MSA. In addition, maximum-likelihood phyloge-

netic trees were inferred using RAxML 7.0.340 with default

parameters under the PROTGAMMABLOSUM62 substitu-

tion model. Trees were visualized with PhyloWidget41 (Sup-

porting Information Fig. S1). Trees for both families have a

stellate appearance, indicating that many lineages are repre-

sented and that no one lineage dominated the calculation.38

Coevolution analyses

Coevolution scores were calculated using five alterna-

tive algorithms: Explicit Likelihood of Subset Covaria-

tion (ELSC22), Observed Minus Expected Squared

(OMES21,29), McLachlan-based Substitution Correlation

(McBASC17,18,20), Statistical Coupling Analysis (SCA19),

and Z-Normalized Mutual Information (ZNMI23). For

ELSC, OMES, McBASC and SCA, coevolution scores were

calculated using a software implementation by Fodor

et al.22,29 For ZNMI, scores were calculated using our re-

implementation of that method.28 For all algorithms, posi-

tions with >50% gaps or very high conservation (<5%

sequence variability, which corresponds to sequence

entropy< 0.198523), were excluded from further analysis.

For ZNMI, positions with >10% gaps were further excluded,

to match its initial implementation by Brown and Brown.23

All analyses were carried out using an ensemble-based

approach.23,28 For the LacI/GalR MSA, 100 sub-

alignments were constructed, each including 90% of the

available sequences. For each sub-alignment, coevolution

scores were calculated. For each position, the scores from

the 100 ensembles were averaged; these are reported as the

“initial” coevolutionary scores. The ensemble average

approach limits the impact that might arise if a few

sequences are misaligned. As an additional control, we gen-

erated a second ensemble containing 50% of the sequences

and calculated its average coevolution scores. If the sequen-

ces in the starting MSA are well sampled, we expect that

results for the 50% ensemble will agree with those of the

90% ensemble (Supporting Information Table S1).

Note that the ensemble/average approach should only

be used to supplement direct inspection of the sequences

included in an MSA. In other analyses, we showed that

this control can fail in cases of extreme over-

representation, because even randomly deleting 50% of

the sequences leaves a sufficient number of redundant

sequences to bias the calculations. For example, 75 LacI/

GalR sequences fall in the LacI subfamily; their sequence

identities ranged from 37% to 99% and the subfamily

phylogenetic tree had nine major branches. When these

subfamily sequences were used in coevolutionary analyses,

results for the 50 and 90% ensembles were in good agree-

ment. However, for both the pairwise and the network

centrality scores, the top 20 consensus positions unexpect-

edly included many positions that tolerate multiple substi-

tutions (Supporting Information Table S2), which

indicates that they are not functionally important. Manual

inspection of the LacI subfamily revealed that 41% of the

sequences were >95% identical to each other. Even with a

randomized, 50% sampling rate, these over-represented

sequences are likely to dominate the coevolutionary calcu-

lation, leading to the misleading results. This example

shows that computed controls do not substitute for man-

ual inspection of an MSA. Note that neither the LacI/GalR

nor the aldolase families had over-represented sequences.

Like the LacI/GalR family, the aldolase family (1562

sequences) was too large for some calculations. There-

fore, we constructed an ensemble of aldolase alignments,

each with 500 sequences as the “90%” ensemble. A sec-

ond ensemble of alignments containing 278 sequences

was used for the “50%” alignment.

For both the LacI/GalR and aldolase families, the 90

and 50% scores had good agreement, which indicates

that a sufficient number of sequences were included in

each alignment. (Supporting Information Fig. S2, Sup-

porting Information Table S1). Further analyses, there-

fore, focused on only the 90% ensemble.

EVC of Coevolving Protein Positions
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Next, we considered that alternative coevolutionary

algorithms have divergent responses to various properties

of MSA columns (such as sequence entropy or random

noise) which might introduce algorithm-specific noise.29

To account for these contributions, we created shuffled

alignments by independently randomizing the order of

amino acids contained within each column. This main-

tains column properties such as amino acid distribution

and sequence entropy, but destroys both phylogenetic

patterns of evolutionary change and coevolutionary rela-

tionships between pairs of positions. Shuffled alignments

have been used as benchmarks for “sector” analyses,42

and various subtractions have been carried out for pro-

tein–protein coevolution.43,44 However, to the best of

our knowledge, this is the first time that shuffled align-

ments have been used to estimate spurious signals arising

in intra-protein covariation analyses. To that end, we

performed “coevolutionary” calculations on each shuffled

MSA. Then, for each pair of positions, the score from

the shuffled MSA was subtracted from the score of the

unshuffled MSA. This calculation is a linear approxima-

tion: it assumes that initial (unshuffled) coevolution

scores were the sum of the true signals and noise. We

refer to the resulting coevolution scores as “subtracted.”

To determine consensus coevolution scores for the ini-

tial and subtracted data sets, we used the method of

Parente et al.,28 with the variation of using the median

Z-score, rather than the mean, to rank-order positions.

(For more details, see consensus EVC scores, below.)

Z-normalized decoy adjusted mutual
information

In subtracting the MSA noise component to reveal “true”

coevolutionary components, we assumed that the magnitude

of the noise was the same in the original and shuffled align-

ments. This assumption should hold for ELSC, McBASC,

OMES and SCA, but is violated by ZNMI. For a pair of posi-

tions x and y, ZNMI scores are calculated in a three-step pro-

cess23: (1) the mutual information, MI(x,y), is estimated; (2)

MI(x,y) is divided by the joint sequence entropy of positions

x and y to calculate the normalized mutual information,

NMI(x,y); and (3) the NMI(x,y) scores are further z-

normalized against the joint distribution of NMI(x,y) scores

for positions x and y. Thus, the third step of this procedure

scales the joint distribution of ZNMI(x,y) scores to a normal

distribution with mean of 0 and variance of 1. An assumption

of this procedure is that there are true coevolutionary signals

to detect: positions with high ZNMI scores are those that

coevolve strongly, relative to each position’s own NMI distri-

bution. However, in shuffled alignments, when coevolutionary

signals have been destroyed, the ZNMI distribution is still

scaled to have a normal distribution with mean 0 and var-

iance 1. Thus, the Z-normalization step of ZNMI would spu-

riously scale the noise of the shuffled alignments to the same

level as the coevolutionary signal in the original alignments.

Subtracting away the shuffled ZNMI score would therefore

amplify, rather than eliminate, the influence of noise.

To prevent this undesirable outcome, we performed

score subtraction before the Z-normalization step, by

subtracting NMI of each shuffled score from the original

score. This variant of the ZNMI algorithm we call

the Z-Normalized Decoy Adjusted Mutual Information

(ZNDAMI), mathematically defined as:

ZNDAMI x; yð Þ5
NMIsub x; yð Þ2lxy

rxy

(1)

where NMIsub(x,y) is the subtracted NMI score‡ (i.e.,

NMIorig(x,y) – NMIshuf(x,y)) and lxy and rxy are the

mean and standard deviation of the joint NMIsub distri-

bution for positions x and y, namely:

lxy5
lxr

2
y1lyr

2
x

r2
x1r2

y

(2)

and

r2
xy5

r2
xr

2
y

r2
x1r2

y

(3)

which depend on the individual distribution mean:

lx5
1

N

X
z

NMIsub x; zð Þ (4)

and variance:

r2
x5

1

N21

X
z

NMIsub x; zð Þ2lxð Þ2 (5)

where N is the number of columns in the alignment that

meet the gap criterion (<10% gaps, see Methods).

Eigenvector network centrality

To identify central nodes in the ELSC, McBASC, OMES,

SCA, and ZNMDAMI coevolution networks, we calculated

the eigenvector centrality31 for each position in the MSA.

These calculations were performed on both the initial

(unsubtracted) and subtracted pairwise coevolutionary

scores (see above). Eigenvector centrality calculations take

into account both the strength of connectivity and the cen-

trality of strongly connected partners, and has been uti-

lized for many diverse applications, including: internet

search engines,‡45,46 social network analysis,47 political

analysis,48 fMRI data processing,49 and epidemiological

disease-transmission networks.50,51

‡As implemented, the NMIsub is actually the original NMI score minus the aver-

age NMI score in an ensemble of 10 reshuffled alignments.
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A key feature of our calculation is that we did not

impose a significance threshold on the pairwise coevolu-

tionary data prior to EVC calculations. Although eventu-

ally necessary, we deferred thresholding until the end of

analyses, which allowed us to detect positions with high

EVC scores that would have otherwise been missed (Sup-

porting Information Table S3 and Supporting Information

Fig. S3). The eigenvector centrality score of the i’th posi-

tion is equal to the i’th row of the dominant column eigen-

vector of the adjacency matrix. That is, for node si, we take

s i 5
1

k

Xn

j51

Wijsj

where Wij are entries of W, the weighted adjacency

matrix, corresponding to the weight between nodes si

and sj. This can be rewritten

k s 5 W � s (7)

where s is the eigenvector we seek, corresponding to the

(necessarily) unique largest eigenvalue k as long as the

centralities are non-negative.52 Eigenvector centrality cal-

culations were carried out using the NetworkX Python

package (http://networkx.github.io/).

In practice, eigenvector centrality is computed iteratively,

as follows: every node is initialized with the same starting

score. Then, at subsequent iterations, the score of a node is

(i) set equal to the edge-weighted sum of the current score

of its neighbors, and (ii) normalized so that the squared

sum of the EVC scores is constant. This process is iterated

to convergence to produce a final eigenvector centrality

score for each position. Informally, this procedure is analo-

gous to first initializing every node to be equally impor-

tant, reflecting our (initial) ignorance as to which nodes

were more central. At every step, nodes that are strongly

connected to other important nodes are preferentially

selected to gain disproportionately more “importance,”

allowing the iteration to uncover important nodes.

Eigenvector centrality calculations were carried out

using the NetworkX python package (http://networkx.

github.io/). More formally, the eigenvector centrality

score of position i in the T’th iteration (si,T), in a net-

work of N positions, is given by the iterative system:

si;T115
qi;TffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j qj;T

� �2
q (8)

qi;T 5
X

j

wi;j

� �
sj;T

� �
(9)

si;051=
ffiffiffiffi
N
p

(10)

where wi,j is the weight of the edges between positions i

and j. For the centrality score to converge, scores must

be non-negative. This is true for all algorithms except

ZNMI, which transforms scores to be z-normalized with

a mean of zero. Thus, for all algorithms, scores were lin-

early transformed to fall in the range [0,1]. The final

eigenvector centrality score assigned to position i, si, is

given by:

si 5 lim
T!1

si;T (11)

This procedure is identical to an algorithm called

“power iteration” that calculates the dominant eigenvector

of a matrix. For networks of coevolutionary scores, power

iteration is applied to the adjacency matrix of the network.

Network degree centrality

We compared EVC scores to a simpler network centrality

score, degree centrality30 (Supporting Information Figs. S4

and S5 and Supporting Information Table S4). This score

computes the total weight of edges directly connected to

each node. As with the EVC scores, weights were trans-

formed to fall on the interval [0,1] for the calculation.

Network comparisons and consensus

In comparing various sets of results (e.g., initial versus

subtracted pairwise scores, or pairwise versus EVC

scores), we had no a priori reason to assume that scores

should be linearly related. Thus, we used a nonparamet-

ric measure—Spearman R2—which can detect any mon-

otonic relationship between two variables. Similarity was

quantified by calculating Spearman R2 for the edge

weights assigned to each pair of positions in the network.

This parameter ranges from 0.0–1.0.

For comparing EVC scores to experimental data, we

determined consensus scores using results from all 5

algorithms for each position. Since each coevolution

algorithm uses a different output scale [e.g., Fig. 2(A,B)],

each set of scores was first Z-normalized to standardize

the mean and variance values. This prevents one algo-

rithm from dominating downstream calculations. The

Z-normalized EVC scores of the 5 algorithms were then

used to determine a median EVC score for each position.

Results were compared to crystal structures from the

aldolase (PDB: 1xfb) and LacI/GalR families (PDBs: 1efa,

1wet, 1rzr, 2nzv, 3oqo, and 1byk).53–59 Molecular

graphics were created using UCSF Chimera 1.8.60

TEA-O analyses

To determine which amino acid changes in each MSA

track with phylogeny, we used TEA-O analyses (http://

nava.liacs.nl/kye/TEA-O/).9 Results for the LacI/GalR

family were taken from Tungtur et al.32 These results

were shown to be independent of the method used for

generating a phylogenetic tree. Similar analyses were per-

formed for the aldolase family, using the phylogenetic

tree shown in Supporting Information Figure S1.
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RESULTS

For this study, we used the LacI/GalR transcription reg-

ulators and the family of 1,6-bisphosphate aldolase

(“aldolase”) (Supporting Information Table S1). The LacI/

GalR family comprises bacterial paralogs with sequence

identities that range from �19–99%.32 The aldolase fam-

ily was chosen as another family with highly divergent

sequence identities (�19–99%), but comprising orthologs

instead of paralogs. These “class I” aldolase homologs are

found in all animals, plants, and green algae.61

Analyses of coevolutionary networks

Coevolution analyses generate a large number of pair-

wise scores (N2, where N is the number of columns of

amino acid positions). Most often, these scores have

been rank-ordered to identify the top pairwise scores or

organized into an all-vs-all heatmap (e.g., Ref. 42). Alter-

natively, coevolution scores have been recast as networks.

For example, several studies imposed a threshold (such

as Z� 4) on the pairwise coevolution scores and created

networks in which top-scoring positions correspond to

nodes and coevolution scores correspond to edges.62–65

A useful depiction of thresholded networks is the

“circos” plot.27 Recently, we used all coevolution scores

to weight the edges between all nodes to directly com-

pare outcomes for related protein families.28 Here, we

have analyzed pairwise coevolution scores as unthre-

sholded networks to identify features that are robustly

identified by mathematically-divergent algorithms.

To identify robust features, each MSA of this study

was analyzed using five common coevolution algori-

thms with diverse mathematical foundations: (i) OMES

measures a v2-like goodness-of-fit parameter21,29; (ii)

McBASC generalizes the correlation coefficient to cate-

gorical data17,18,20; (iii) ELSC22; and (iv) SCA19 take a

perturbative approach; and (v) ZNMI23 uses an infor-

mation theoretic approach to measure shared

Figure 2
Eigenvector centrality scores show better correlation between coevolution algorithms than do pairwise scores. The example shown is for the aldolase

family. Histograms show the distribution of coevolutionary scores from (A) ELSC and (B) McBASC. Between these two algorithms, correlation of
(C) initial (unsubtracted) or (D) subtracted pairwise coevolution scores have modest correlations, as indicated by their Spearman R2 values. How-

ever, correlation of (E) unsubtracted or (F) subtracted EVC scores is greatly improved, as indicated by larger R2 values.
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information content. As expected, for all MSAs, the five

algorithms generated different rank orders for the unsub-

tracted pairwise scores [Table I; Fig. 1(C) and Supporting

Information Figs. S6–S9)]. Pairs that were assigned a

high coevolution score by one algorithm were often

assigned moderate or low scores by another. When only

the top score was considered for each position (in net-

work formalism, the maximum edge weight, “MEW”),

algorithm agreement did not improve (Supporting Infor-

mation Table S5).

We next attempted to reconcile results by correcting

for the different algorithm sensitivities to non-

coevolutionary signals, such as sequence entropy and

random noise.29 To estimate these spurious signals, we

created “shuffled” alignments by separately randomizing

the amino acids within each column of the LacI/GalR

and aldolase MSAs. This maintains column properties

such as amino acid distribution and sequence entropy,

but destroys both phylogenetic patterns between and

coevolutionary relationships within naturally evolved

sequences. All coevolutionary calculations were repeated

for the shuffled alignments, and for each pair of posi-

tions in the coevolution network, the shuffled scores

were subtracted from those of the unshuffled MSAs.

When the final scores were compared, the subtraction

process only modestly improved comparisons of pairwise

scores between alternative algorithms (Table I). However,

as discussed below, subtraction improved centrality

scores to a greater degree.

Notably, when comparing the pairwise scores, no sin-

gle algorithm appeared to perform “better” than the

others. A criterion frequently used to indicate algorithm

success is mutational sensitivity of top scoring positions.

For the LacI/GalR family, most of the positions with top,

subtracted pairwise scores are sensitive to mutagenesis,

regardless of the algorithm (Supporting Information Fig.

S10).

Thus, we were curious whether deeper patterns in

coevolutionary data would also identify functionally

important positions, and whether they would be more

robustly detected by multiple algorithms. This required

that we first consider how and when coevolution scores

are thresholded: Like most other metrics of evolutionary

patterns in MSAs, coevolution scores are continuous,

with no clear breaks to separate “important” from “not

important.” Threshold choice is always arbitrary: Con-

servative thresholds eliminate meaningful data; liberal

thresholds may include data with no meaning. In this

work, we deferred thresholding as long as possible. We

chose to analyze coevolution scores as unthresholded,

weighted networks [e.g., Fig. 1(A,B)], using graph

theory to calculate network centrality.

Network centrality can be calculated in a number of

different ways.66 Most existing methods were developed

for social network analyses. Methods such as “closeness”

and “betweenness” centrality measure the number of

steps between nodes,66 and thus do not make sense for

the complete graphs created by unthresholded, pairwise

coevolution scores. In contrast, both degree (DC)30 and

eigenvector (EVC)31 centrality measure the effect of one

node on all other nodes, based on the weights of the

connecting edges. Whereas DC simply sums the weight

Table I
Eigenvector Centrality Reconciles Results for Various Coevolution Analyses

Coefficient of determination (Spearman R2)

Aldolase LacI/GalR

Pairwise EVC Pairwise EVC

Algorithms Initial Sub Initial Sub Initial Sub Initial Sub

ELSC vs. McBASC 0.48 0.51 0.71 0.74 0.09 0.11 0.27 0.50
ELSC vs. OMES 0.64 0.65 0.78 0.78 0.37 0.42 0.66 0.73
ELSC vs. SCA 0.19 0.23 0.40 0.43 0.02 0.14 0.14 0.32
ELSC vs. ZNMI 0.44 0.46 0.78 0.79 0.23 0.25 0.45 0.60
ELSC vs. TEA-O 0.30 0.54
McBASC vs. OMES 0.59 0.63 0.72 0.75 0.14 0.20 0.14 0.38
McBASC vs. SCA 0.20 0.23 0.22 0.26 0.08 0.13 0.12 0.36
McBASC vs. ZNMI 0.48 0.52 0.65 0.69 0.18 0.28 0.05 0.34
McBASC vs. TEA-O 0.26 0.38
OMES vs. SCA 0.25 0.25 0.31 0.31 0.31 0.34 0.43 0.55
OMES vs. ZNMI 0.50 0.54 0.77 0.85 0.46 0.50 0.51 0.69
OMES vs. tEA-O 0.26 0.70
SCA vs. ZNMI 0.35 0.37 0.60 0.61 0.18 0.18 0.33 0.47
SCA vs. TEA-O 0.25 0.42
ZNMI vs. TEA-O 0.34 0.77
Median improvement 0.03 0.19 0.23a 0.05 0.12 0.29a

For each pair of algorithms, non-parametric correlation coefficients (Spearman R2) are shown for pairwise coevolution and eigenvector (EVC) scores, using either the

unsubtracted (“Initial”) or subtracted (“Sub”) networks. As discussed in Methods, ZNDAMI is used in place of subtracted ZNMI.
aMedian improvement does not include the TEA-O comparisons.
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of edges connected to each node, EVC accounts for the

centrality of neighboring nodes as well. DC and EVC

might identify the same nodes, but in principle EVC is

sensitive to more subtle network effects. In the current

study, DC results agreed strongly with EVC results (Sup-

porting Information Figs. S4 and S5). For simplicity, we

focused remaining analyses on EVC results.

We first compared that the top EVC scores to the

top pairwise coevolutionary scores (MEW, defined

above). Notably, the MEW and EVC scores do not con-

sistently correlate, by either Spearman correlation coeffi-

cients (Supporting Information Table S5) or by Jaccard

indices (Supporting Information Fig. S3). Thus, we con-

clude that EVC calculations for the LacI/GalR and

aldolase families identify a group of amino acid posi-

tions that is distinct from the pairwise positions. That

is, the centrality calculations can discriminate positions

with many moderate scores from those with one strong

but many weak scores [e.g., Fig. 1(B) vs. Fig. 1(C)].

Furthermore, if pairwise coevolution scores were thresh-

olded (limited to the top scores) prior to downstream

analyses, several positions with high EVC scores would

not be detected.

Next, we compared the EVC scores calculated by the

alternative coevolutionary algorithms. Agreement among

EVC scores was greatly improved over all comparisons of

pairwise scores, and across the whole range of scores. For

the EVC scores determined for the initial (unsubtracted)

networks, almost all comparisons showed better correla-

tion than the pairwise coevolutionary scores (Table I,

Fig. 2(C) vs. Fig. 2(E); Supporting Information Figs. S6–

S49 vs. Supporting Information Figs. S11–S14). Subtract-

ing noise from the coevolution scores prior to EVC cal-

culations usually further improved R2 values [Table I;

Fig. 2(D) vs. Fig. 2(F); Supporting Information Figs. S13

and S14). Agreement indicates that network centrality is

a robust feature of the coevolutionary data, in contrast

to the pairwise scores, which show more variability

among algorithms. In addition, we noted that positions

with high EVC scores were highly connected to each

other within the network of coevolution scores [e.g., Fig-

ure 1(A,B)]. However, like the pairwise coevolution

scores, EVC connectivity was not obligatorily related to

structural proximity (Figs. 3 and 4).

Finally, we considered an ongoing concern about

coevolution algorithms—the extent to which the covaria-

tion analyses distinguish true “coevolution” from amino

acid changes related to phylogeny.43,67,68 Similar con-

siderations have been raised for the first eigenvector of

coevolutionary data.42,44 The rationale for our approach

was that, if phylogeny is contributing a great deal to the

covariation/EVC scores, then positions with top scores in

phylogenetic algorithms should correlate with those iden-

tified by algorithms that are designed to identify amino

acids changes that correlate with phylogenetic branches.

Several algorithms have been devised to detect this pat-

tern.1–3,9 Of these, TEA-O9 is convenient for compari-

son with coevolution analyses: TEA-O separately scores

“specificity” positions that change at the later branches

from “conserved” positions that correspond to the pri-

mary branches. Due to their conservation, most of the

latter are excluded from coevolutionary analyses.

To that end, we compared EVC scores to TEA-O

scores for the LacI/GalR and aldolase families. As

expected, positions with high TEA-O “conserved” scores

show essentially zero correlation with EVC scores for

either family (data not shown). For the LacI/GalR family,

EVC scores show comparable correlations with TEA-O

specificity scores as they do with each other (Table I).

However, the aldolase EVC scores show lower correlation

with TEA-O (Table I) than they do with each other.

The different correlations may arise because the LacI/

GalR family is comprised of paralogs (and thus its MSA

could have a stronger phylogenetic signal), whereas the

aldolase family is comprised of orthologs. Such differences

among protein families could help explain why estimating

and correcting for the contributions of phylogeny to

intraprotein covariance has been challenging. Further, the

presence or absence of phylogeny in the covariation signal

does not diminish the fact that the top EVC positions are

important to structure and function in both LacI/GalR

and aldolase families (next section). The possible implica-

tions of coexisting and overlapping patterns in evolution-

ary data are included below, in the Discussion.

Figure 3
Top EVC Positions for Aldolase. This view of aldolase is looking into
the active site of one monomer. The top 20 consensus EVC positions

(35, 43, 47, 53, 56, 106, 107, 122, 145, 148, 168, 169, 193, 214, 234,
237, 267, 270, 275, and 300; magenta and green spacefilled) of tetra-

meric human aldolase C are shown on one monomer (PDB: 1xfb58).
Active site positions are highlighted in dark gray. EVC positions in con-

tact with active site residues are highlighted in green; those without

contact are highlighted in magenta.
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Eigenvector central positions are important
for structure and function

To assess biological significance, we compared the

known structural properties and mutational sensitivities

of the top 20 EVC positions. To that end, we first deter-

mined a consensus set of positions (see Methods). This

was motivated by the fact that, although EVC calcula-

tions greatly improved agreement between coevolution

algorithms, agreement was never 100%. In choosing this

number of sites, we also considered the problem of

thresholding. The histograms of EVC scores (diagonals of

Supporting Information Figs. S11–S14) show distinct

populations of scores, and the top 20 scores fall within

the top population. In many cases, the 21st (or lower-

ranked) EVC position also fell within this population

and might therefore also be functionally important;

global analyses that avoid such thresholding are discussed

below.

In the aldolase family, the top 20 EVC positions fall

near (i) the active site, (ii) the inter-subunit interface or

(iii) along the surface on the same face as the ligand bind-

ing pocket. (Fig. 3, magenta and green spacefilled) Eight

of these positions (35, 106, 107, 145, 148, 270, 275, and

300) contact active site residues and a ninth (position 43)

directly participates in catalysis. (Of the eight catalytic res-

idues, six are highly conserved and therefore cannot

coevolve). Since these positions fall in crucial functional

locations, they are likely to contribute to aldolase function.

We speculate that sequence changes at these positions

might fine-tune the active site geometry and catalytic

parameters to the ecological niche of each organism.

In the LacI/GalR family, the top 20 positions were

compared to the extensive structural, mutational and

computational studies that have been performed on sev-

eral paralogs. Eighteen of the top EVC positions are sen-

sitive to mutation in LacI; 19 positions are located in

structural regions that are clearly important (Fig. 4; Sup-

porting Information Table S6).53–57,69–80 Indeed, the

top 20 EVC positions reads as an elite list of functionally

important positions: in addition to the comprehensive

LacI mutagenesis study,70,79,80 many of these positions

were individually targeted for mutagenesis after in-depth

structure/function analyses and molecular dynamics sim-

ulations suggested (and experiments confirmed) their

importance. The two positions that lack known muta-

tional response (27 and 102) have only been mutated in

LacI. These positions might be key in other LacI/GalR

proteins; we recently demonstrated that mutating non-

conserved positions can have widely different outcomes

among homologs.77

As we noted above, setting an arbitrary threshold for

top EVC positions might miss important information

about other positions. To consider the full range, we

color-coded each all amino acids in each structure,

according to their rank-ordered EVC scores. Given the

continuum of shades that represents the range of scores

(Fig. 5, Supporting Information Figs. S15 and S16 color

bars), it is striking that structural regions emerge that are

dominated by one color. For the LacI/GalR family, posi-

tions assigned high EVC scores cluster in the interior of

the protein (Fig. 5, white and Supporting Information

Fig. S16, magenta), especially near the binding sites of

the allosteric effector ligand and DNA operator and

along the intermonomer interface. In the aldolase family,

the top 20 consensus positions were representative of the

global pattern: positions with higher centrality scores

were generally found on the protein interior [Supporting

Information Fig. S15(D)], at the tetramerization interac-

tion surface [Supporting Information Fig. S15(C)], and

on the same surface of the protein as the active site

[Supporting Information Fig. S15(A)]. In contrast, the

opposite surface—far from the active site—generally had

lower EVC scores [Supporting Information Fig. S15(B)].

Figure 4
Top EVC Positions for LacI/GalR. The top 20 consensus EVC positions

(17, 27, 29, 51, 52, 55, 57, 98, 102, 117, 125, 150, 157, 160, 161, 193,
220, 291, 293, and 321; spacefilled black) for the LacI/GalR family were

mapped onto the homodimeric structure of LacI (PDB: 1efa53). The
DNA (ribbon at top of structure) and the bound allosteric effector

ligand, (orthonitrophenyl-b-D-fucopyranoside, spacefilled white) are

highlighted to show binding sites.
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DISCUSSION

Pairwise coevolution of amino acid positions provides

an incomplete view of protein evolution. Science’s com-

mon understanding of protein structure/function rela-

tionships suggests that multiple amino acids should be

constrained together during evolution. Direct calculations

for detecting larger groups of coevolving positions have

been limited by the sheer number of output scores,

which increase exponentially. (For a protein with N posi-

tions, pairwise coevolution calculates N2 scores; three-

way coevolution would calculate N3 scores, and so forth)

Thus, investigators have turned to analyses of pairwise

data to identify multiply constrained posi-

tions.25,42,62,81–83 For one implementation of SCA,

spectral decomposition of pairwise scores was used to

determine the first eigenvector, but results were found to

be heavily influenced by the sequence conservation for

each position.84 Here, we have avoided such spurious

signals via the use of shuffled alignments to estimate and

subtract non-coevolutionary signals. Our results show

that subtracted EVC scores contain information about

amino acid positions key to structure and/or function of

the LacI/GalR and aldolase families.

Strikingly, our analyses reconciled the contradictory

results from alternative coevolution algorithms, showing

that this deeper signal of evolutionary change is robust.

Other strengths of EVC calculations are that they (i) are

mathematically guaranteed to have a unique top eigen-

value,52 (ii) provide a tractable means to detect positions

that are constrained by multiple partners, and (iii) defer

problems introduced by thresholding until the final anal-

yses. Positions with large EVC scores appear to largely

follow the pattern that can be seen qualitatively in Figure

1(B): some positions must simultaneously reconcile

coevolutionary constraints from many other positions.

For these positions, no single constraint is strong, but

many are moderate [Fig. 1(B)]. This contrasts with the

case illustrated in Figure 1(C): when two positions have

strong coevolutionary constraints between them, this can

override the influence of most other positions (which

subsequently manifests as low pairwise scores).

Figure 5
Global structural analysis LacI/GalR EVC scores. The homodimeric structure of LacI (PDB: 1efa53) is color-coded based on the rank order of each

positions’ EVC score (high scores, white; low scores black). Bound DNA is shown at the top of the figure in gray. Inducer ligands bind in the cen-
tral pocket of each monomer. Given the range of available scores (color bar at the top of the figure), it is striking that some structural regions are

dominated by similar scores. For example, the inducer binding site is surrounded by positions with high EVC scores (very light gray and white).

This figure is shown in color in Supporting Information Figure S16.
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Despite the increased correlation over pairwise data,

the EVC correlations do not perfectly reconcile the alter-

native algorithms. First, for aldolase, the correlations

between SCA and other algorithms are lower (R2< 0.5)

than the other comparisons. Perhaps SCA (i) is not an

appropriate analysis for this family or (ii) detects a dif-

ferent evolutionary signal for this family than the other

algorithms. Second, for the LacI/GalR family, half of the

EVC algorithm correlations had R2 values less than 0.5

(Table I), whereas those for aldolase (except SCA) were

generally above 0.7. We speculate that this is related to

the fact that the LacI/GalR family comprises paralogs,

whereas the aldolase MSA contains only orthologous

sequences. The lower LacI/GalR EVC correlations were

not explained by the range of sequence identities in its

MSA, since the aldolase MSA spans a comparable range

(Supporting Information Table S1). Nevertheless, the

EVC correlations were a significant improvement over

pairwise correlations; every prior step of the calculations

had much worse correlations.

In addition, we wish to stress that our results do not

imply that EVC positions are a priori more important to

structure or function than positions with other types of

evolutionary patterns. Instead, we propose that protein

evolution should be thought of as having many types of

constraints that affect different groups of positions, some

of which is captured by pairwise coevolution and others

by EVC calculations. Still other patterns include highly

conserved positions10 and changes that track with phy-

logeny.1–3,9 We have also observed that, as one common

scaffold evolves functional diversity, the positions under

evolutionary pressure can move to different locations.28

To date, all of these evolutionary patterns appear to

identify mutationally sensitive positions, and there is no

reason to constrain “importance” to just one pattern of

change. Indeed, our previous studies show that a large

number of positions, representing a variety of evolution-

ary patterns, contribute to the evolution of altered LacI/

GalR protein function.28,32,77 We expect similar results

for other protein families. Even families that comprise a

single ortholog—such as aldolase—likely evolve func-

tional variation that is appropriate for distinct biological

niches. (In the case of aldolase, the central metabolism of

each organism must adapt to variations in nutrient

availability.)

Finally, some positions might be described by multiple

evolutionary patterns. One possibility (although not

dominant in the LacI/GalR or aldolase families) is that

positions with top pairwise scores are also top EVC

scores. Another possible overlap is between positions

with strong coevolution and phylogenetic scores: the fact

that covariation can occur from either coevolution or

phylogeny is usually seen as a drawback to these calcula-

tions, but the changes of some coevolving pairs might

also track with phylogeny. The same is true for EVC

positions, as may be the case for the LacI/GalR family.

Nor does the overlap diminish the functional significance

of positions with top EVC scores, as shown by their sen-

sitivity to mutagenesis and/or their key structural loca-

tions. Finally, the aldolase data show that EVC scores are

not always dominated by phylogeny, because EVC and

TEA-O scores show lower correlations than the EVC

scores with each other (Table I). As we noted above,

each protein family may have different phylogenetic con-

tributions to covariation scores; a strong difference could

occur between families that comprise orthologs versus

those comprising paralogs.

One remaining question is whether positions with dif-

ferent types of evolutionary patterns have different muta-

tional responses. Conserved positions almost always

exhibit what we recently called “toggle” behavior77—at a

given position, most amino acid substitutions abolish

function; furthermore, compensatory changes at other

positions are seldom identified. Mutational results for

positions with high pairwise coevolutionary scores have

been harder to predict.77 Supporting Information Figure

S10 shows that many of the top pairwise positions in

LacI/GalR also act as functional toggles when mutated

individually. For coevolving pairs of positions, early

expectations were that their mutations would compen-

sate each other. However, results from double mutant

cycles have not shown clear-cut patterns; some show no

linkage between coevolving pairs of positions,62 others

show epistasis (nonadditivity), with the caveats that non-

additivity was not always predictable or uniquely limited

to the coevolving positions.85–87

Given the high prevalence of epistasis that has been

documented for changes at nonconserved positions dur-

ing evolution,88–91 we expect that EVC positions will

also show nonadditivity for combinatorial mutations.

Indeed, for the LacI/GalR family, mutational epistasis has

already been documented among several of the top 20

EVC positions.92 Furthermore, multiple substitutions at

three top EVC positions in LacI/GalR (51, 52, and 55)

reveal a “rheostat” behavior: that is, the multiple variants

for one position could be rank-order ed to show a pro-

gressive effect on function that spanned orders of magni

tude. It is intriguing to consider (i) whether the strong

edges between high EVC positions can predict which

groups of positions will show nonadditivity with each

other; or (ii) whether positions that have both strong

EVC and strong phylogeny scores (such as in LacI/GalR)

have different mutational outcomes than positions that

have either strong EVC or strong phylogenetic scores

(such as in aldolase).

In conclusion, EVC network centrality detects posi-

tions that can be important to protein structure and

function. Furthermore, EVC calculations are more con-

sistent between algorithms than pairwise coevolution

scores, indicating that these central nodes are a robust

property of coevolution networks.
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