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Computation is a useful concept far beyond the disciplinary boundaries of

computer science. Perhaps the most important class of natural computers

can be found in biological systems that perform computation on multiple

levels. From molecular and cellular information processing networks to ecol-

ogies, economies and brains, life computes. Despite ubiquitous agreement

on this fact going back as far as von Neumann automata and McCulloch–

Pitts neural nets, we so far lack principles to understand rigorously how

computation is done in living, or active, matter. What is the ultimate

nature of natural computation that has evolved, and how can we use

these principles to engineer intelligent technologies and biological tissues?
1. Introduction
In March 2018, we held a Royal Society Theo Murphy workshop to bring

together innovators in the nature of non-traditional computation, broadly inter-

preted and from all career stages, to inspire new directions towards this

pressing gap. We had researchers who have a common interest, but who do

not normally meet, with the goal of creating a common research agenda. We

learned from experimental synthetic biologists what current technologies

allow, from complex systems theorists what existing principles can tell us,

from computer scientists and statisticians what can be learned from noisy infor-

mation transfer, and from physicists what non-equilibrium principles may

apply to strongly out-of-equilibrium complex matter that breeds computation.

This issue of Interface Focus represents the culmination of that meeting,

reflecting four major themes that arose during the meeting: (i) non-traditional

computing devices; (ii) neural networks and neuronal information processing;

(iii) cellular and molecular biological information processing; and (iv) the phy-

sics of information in complex systems. In this issue, we aim to create a road

towards a new synthesis of natural computing, connecting perspectives on

computation ranging from thermodynamics to biology.
2. Non-traditional computing devices
Nicolau and colleagues [1] discuss a strategy for reducing the computation time

of combinatorial problems using network-based computation. Often, they

require a brute-force approach and are NP complete. Combinatorial compu-

tation problems are ubiquitous and important, including such tasks as circuit

verification, protein folding, formal reasoning and network problems such as

routing. By formulating NP-complete problems as graphs, Nicolau and col-

leagues can design microfluidic network structures through which active

agents (e.g. bacteria or filamentous proteins) can stochastically explore. The

structure of the network encodes the problem. They present strategies for sol-

ving a host of different basic combinatorial problems in this way, including

the subset sum problem, the clique problem, the Steiner tree problem, the

travelling salesman problem, maze solving and the satisfiability problem. The

subset sum problem, for example, asks, for a given set of n integers S ¼
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fs1, . . ., sng, if there is a subset whose elements sum to a

target integer T. Many problems in computer science are

isomorphic to these, so potential improvements in calculating

them is of high interest. What is the advantage of network

computing over traditional electronic computers? In

essence, they trade speed at the per-operation level for

parallelizability.

The study of Adamatzky [2] argues that fungi Basidiomy-
cetes can be used as computing devices. Adamatzky describes

an architecture of ‘fungal computers’, within which a

mycelium provides a network of processors, while fungal

fruit bodies comprise an input/output interface. The study

then demonstrates that information within a fungal computer

can be represented by spikes of electrical potential, so that the

electrical activity can facilitate a computation via the electrical

impulses propagating in, and modified by, the mycelium net-

work. One of the promising applications is large-scale

environmental monitoring based on mycelium networks

deployed in soil and air.
3. Neural networks and neuronal information
processing

In their work, Saglietti et al. [3] bridge the fields of statistical

mechanics, neuroscience and machine learning. One of the

open problems in neuroscience is to understand how the

brain can learn. One of the dominating models of learning

goes back to J. J. Hopfield’s influential paper in 1982 in

which he showed how to encode memories in a simple disor-

dered system. There are a number of shortcomings with

Hopfield’s network, in that it becomes unstable, shows spur-

ious memories and can undergo catastrophic ‘forgetting’.

Saglietti et al. present a learning rule that overcomes many

of these problems, thus providing novel insights into how

the brain may learn, but also making a contribution to

machine learning.
4. Cellular and molecular biological information
processing

Suderman & Deeds [4] apply information theory to biochemical

signal transduction networks. Processing information about

their environment or even their internal state is an essential

task of biological systems. Information transmission in cells,

however, is noisy, which puts a limit on the amount of

reliable information that can be processed. Indeed, measure-

ments of the information that is transmitted by biological

systems indicate that this is often less than a bit. This raises

the question of whether this is a fundamental limitation of

the networks. Suderman and Deeds use extensive simu-

lations of artificial signalling networks to demonstrate that

biological information processors transmit much less infor-

mation than would be theoretically possible. This leaves

open the question as to why this is the case. The authors

suggest that extrinsic noise may reduce the information trans-

mission capabilities of cells, and they even suggest that in

certain situations lower information transmission is

better than higher information transmission.

Schmelling & Axmann [5] explore a basic mechanism that

cells have evolved to compute environmental shifts—the

circadian rhythm. They argue that computational models
have played an indispensable role in identifying unifying

principles of circadian clocks. The central common feature

is regulatory networks with multiple feedback loops, either

with a post-translational oscillator as in cyanobacteria or

with nested transcription–translation feedback loops as in

eukaryotes. The cyanobacterial oscillator is the most primitive

that is known and provides insights into how such a compu-

tational mechanism may have evolved. The oscillator consists

of a monohexameric protein, KaiC, that gradually becomes

phosphorylated during the day until it is completely phos-

phorylated at the onset of night. The reverse process occurs

during the night until it is completely unphosphorylated in

the morning. The daytime configuration stimulates the use

of sunlight-derived energy for cell growth and global gene

regulation. Schmelling and Axmann point out that environ-

mental noise and seasonal variation are necessary for the

evolution of circadian oscillators, and that oscillators provide

a robustness mechanism to unpredictable changes in the

environment. Circadian oscillators are a fascinating example

of computation in nature that could inspire synthetic biology

and non-traditional computing paradigms.

Wiesner and colleagues [6] address an ongoing problem

of how developing cells in multicellular organisms compute

the outcomes of their developmental programmes—how

does a stem cell decide to proceed down, say, the erythroid

path (committing to becoming B cells, T cells or natural

killer cells, for example) as opposed to the myeloid path

(committing to becoming red blood cells or macrophages,

for example). A question of cellular identity arises: how

much ‘potential’ for becoming different cell types does each

step on the developmental pathway have? The best way to

measure this may be using information theory—Shannon

entropy tells of the level of disorder in the system. In a

binary digital dataset, entropy is maximal when half the

bits are 0 (or OFF) and half are 1 (or ON). Based on the

high potential that stem cells have, intuition may suggest

that cells lose entropy as they become more specifically

ordered to a definite cell type. On the other hand, maturation

of cell types may result in more genes being expressed. An

increased system size may cause some maturation steps to

increase rather than decrease the entropy. Wiesner and col-

leagues used single-cell transcriptomic datasets to measure

the binary entropy of cells moving down developmental

pathways. They found that the entropy in these datasets

varies non-monotonically, increasing immediately after line-

age commitment points. This suggests a new view of gene

expression space during development, where new dimen-

sions of expressivity open even as previous potential

dimensions become inaccessible.
5. The physics of information in complex systems
Chu & Spinney [7] consider a physically plausible model of a

so-called finite state machine or FSM. FSMs are a non-universal

model of computation that has significant importance in

computer science. The article discusses a possible physical

implementation of FSMs and calculates the energy required

to update such an FSM.

The key notion considered by Kolchinsky & Wolpert [8] is

semantic information. The new formalization begins with the

syntactic information captured by Shannon information

which quantifies the amount of statistical correlation between
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systems. It then defines the semantic information as the

syntactic information between a physical system and its

environment that is causally necessary for the system in

order to maintain its existence over time. Semantic infor-

mation is asymmetric: an organism may have semantic

information about its environment, being dependent on its

specific features, while the environment does not necessarily

possess semantic information about the organism. The

semantic information is further analysed from a thermodyn-

amic point of view, using the methods of non-equilibrium

statistical physics. In particular, one may define the semantic

efficiency as the ratio of the semantic information observed

under an optimal intervention to the system dynamics, to

the total transfer entropy.

Harding et al. [9] study thermodynamics of contagions,

considered as distributed computational processes. This per-

spective formalizes a disease spread developing across a

contact network in statistical–mechanical terms, and identifies

critical thresholds and distinct phases of epidemics. Analo-

gously to the efficiency of heat-engine or refrigeration cycles,

defined as the ratio of desired output (for example, the cooling

effect) to the required work input, the study introduces the

thermodynamic efficiency of contagions. This thermodynamic

efficiency is defined as the ratio of the uncertainty reduction

during an epidemic to the work needed by a specific interven-

tion. This view is contrasted with an alternative interpretation

according to which the thermodynamic efficiency of a patho-

gen emergence can be defined with respect to the work

extracted by the pathogen during the infection spread. The

study argues that knowing the efficiency of contagions
would help in a comparative analysis of various interventions

as well as pathogen emergence paths.
6. Outlook
We conclude with a discussion of the outlook for this field.

The ever-increasing combined technological advances in

machine learning and biotechnology raise some fascinating

prospects: with high dimensional, high resolution data, we

stand the chance of capturing what is ‘really’ happening in

complex systems using machine-guided analysis pipelines.

We also feel that the most important conceptual underpin-

ning of biological science, evolution by natural selection,

has been rather neglected in studies of biological compu-

tation. Nevertheless it lurks in the background and is the

driving force for how natural computations arise in biology.

A complete synthesis of biological computation must account

for the evolutionary forces that shaped it.

Ongoing efforts to nucleate a community around the topic

of computations in natural systems and non-traditional

contexts have resulted in a new book [10] in addition to a

wiki (https://centre.santafe.edu/thermocomp/Santa_Fe_

Institute_Collaboration_Platform:Thermodynamics_of_

Computation_Wiki). We hope that this meeting provides

further inspiration for new directions in discovering how

matter computes.
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